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Introduction

The Hodge conjecture on the algebraicity of cohomology classes is probably
one of the most well-known open problems in modern mathematics, and cer-
tainly a topic of central interest in analytic and algebraic geometry.

Despite the remarkable number of contributions, however, the conjecture
still seems to be far from a complete solution, even for Abelian varieties, which
are relatively well understood.

In this thesis we focus on the Hodge conjecture and related questions in
the setting of Abelian varieties, which, while exhibiting most of the richness
of the general problem, allows the development of specific tools that have led
to important partial results. In this context it is rather natural to introduce
the notion of an abstract Hodge structure, a rational vector space equipped
with some extra structure at the level of C-points.

In turn, to every Hodge structure we can associate a certain algebraic
group, called its Mumford-Tate group, which allows a purely representation-
theoretic description of Hodge classes. In principle, once the Mumford-Tate
group of a Hodge structure is known, the computation of Hodge classes is
reduced to a problem in invariant theory, and this is often enough to determine
the whole Hodge ring, sometimes not just for the Abelian variety we started
with but for its powers as well.

On the other hand, when the Abelian variety A is defined over a number
field K, another long-standing conjecture, formulated by Tate, makes predic-
tions about the algebraicity of certain (étale) cohomology classes.

The striking similarities between these two seemingly unrelated statements
led Mumford, Tate and Serre to conjecture that a close connection should exist
between the Mumford-Tate group of A and the action of the absolute Galois
group of K on the `-adic Tate module T`(A). This statement is now known as
the Mumford-Tate conjecture and has an important part to play in this work.

A large part of this thesis is based on the paper “Hodge classes and Tate
classes on simple abelian fourfolds” ([MZ95]), where a criterion is given for the
existence, on simple Abelian varieties of dimension 4, of “exceptional” classes,
namely classes that we expect to be algebraic but do not lie in the algebra
generated by divisor classes.
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4 CONTENTS

The tools developed along the way actually allow the analysis of many
other cases, and following Ribet, Serre, Tanke’ev and many others we recount
the proofs of the Hodge and Tate conjectures for Abelian varieties satisfying
various combinations of additional requirements on the dimension and on the
endomorphism algebra.

After the truth of the so-called minuscule weights conjecture was estab-
lished by Pink in [Pin98], it has become possible to give unified proofs that
work equally well in the complex and `-adic case; also, in many circumstances
the representation-theoretic properties of the Mumford-Tate group allow its
precise determination, and the `-adic counterparts of the same arguments are
enough to prove the Mumford-Tate conjecture by computing both sides of the
predicted equality. Whenever possible, we try to adopt this kind of approach,
in order to emphasize the similarities between the two conjectures.

We conclude this introduction with a brief outline of the material to follow.
In the first two chapters we discuss various preliminaries, especially re-

garding reductive algebraic groups and their representation theory; as most of
the material is fairly standard, proofs are kept to the bare minimum. Chapter
3 then introduces the Mumford-Tate and Hodge groups, our main objects
of interest, and contains a list of their most important properties. We also
prove a characterization of the Mumford-Tate group (Prop. 3.1.2) which is
often stated without proof in the literature, and will play a relevant part in
subsequent sections.

The following chapter consists entirely of an account of what Mumford-
Tate groups can look like in low dimension, namely for varieties of dimension
1 or 2. This is essentially an elaboration of Examples 5.4 and 5.7 and Exercise
5.6 of [Mooa], presenting the arguments from the reference in greater detail.

In Chapter 5 the precise statements are given for the Hodge, Tate and
Mumford-Tate conjectures, along with some background and a series of results
that will allow us to take a unified approach to both geometric and `-adic
questions.

Chapters 6, 7 and 8 are the core of this work; the first of these is dedicated
to the computation of Mumford-Tate groups for some Abelian varieties with
additional restrictions on both the endomorphism algebra and the dimension,
whilst in the other two we drop any assumption on the endomorphism algebra.
We are then able to obtain complete results for varieties of prime dimension;
the next interesting case - namely, varieties of dimension 4 - is a difficult
problem in its own right: it shall be the subject of the last Chapter, where we
give a complete account of the main theorem of Moonen and Zarhin, again
presenting detailed proofs, expanding computations and expliciting the full
argument for varieties of type IV(2, 1), a part of which was explained only
briefly in [MZ95].



CHAPTER 1
Preliminaries

We collect here some useful results and definitions, starting with the notion
that underlies everything we deal with in this work:

Definition 1.0.1. Let V be a (finite dimensional) Q-vector space. On the
complex vector space V ⊗QC we have a notion of complex conjugation, induced
by v ⊗ z = v ⊗ z̄ for all v ∈ V and z ∈ C. A Q-Hodge structure of weight
m ∈ Z is the data of V together with a decomposition

V ⊗Q C ∼=
⊕

p+q=m

V p,q,

where each V p,q is a complex vector space and V p,q = V q,p.

The type of a Hodge structure is the collection of the pairs (p, q) such that
V p,q is non-trivial, and a vector v ∈ V is called a Hodge class if it belongs
to V 0,0.

1.1 Algebraic groups

Throughout, let k be a field and let k̄ denote a fixed separable closure of k.

As it is well known, Gm,k := Spec k
[
X, 1

X

]
can be endowed with the

structure of an affine algebraic group over k, called the multiplicative group
of k. A split torus over k is an affine algebraic group of the form Gn

m,k for a
certain (positive) integer n.

More generally, an algebraic torus over k is an affine algebraic group G
over k such that Gk̄ is a split torus.

5
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1.1.1 Characters and cocharacters

Let T be a torus over k. Define the character group (resp. cocharacter
group) of T to be

X∗(T ) = Hom
(
Tk,Gm,k

) (
resp. X∗(T ) = Hom

(
Gm,k, Tk

))
.

The assignments T 7→ X∗(T ) and T 7→ X∗(T ) are clearly functorial in T ,
but in fact much more is true:

Theorem 1.1.1. Let Γ be the absolute Galois group of k, i.e. Gal
(
k/k

)
.

Then the functor X∗ establishes a (contravariant) equivalence between the
category of algebraic tori over k and the category of free abelian groups of
finite rank equipped with a continuous action of Γ. Similarly, the functor X∗
is an equivalence between the same two categories.

1.1.2 Weil restriction of scalars

Let K/k be a finite extension of fields and let G be an affine group over K,
thought of as a functor

G : (AlgK)→ (Groups)

such that the underlying set-valued functor is representable. Then the functor

ResK/kG : (Algk) → (Groups)

A 7→ G(A⊗k K)

is an affine group over k in the above sense, called the Weil restriction of G
to k.

Remark 1.1.2. By abstract nonsense (Yoneda lemma) the above property char-
acterizes ResK/kG up to unique isomorphism.

1.1.3 Lie algebras and the Weil restriction of scalars

Since we will almost always work with Lie algebras instead of their group
counterparts, it is a natural question to ask what happens to them when ap-
plying the restriction of scalars functor. In this paragraph, following [BGK04],
we give an answer to this question.

Let E/K be a separable field extension and Θ an algebraic group defined
over E. Here we restrict ourselves to the case of affine algebraic groups, which
is the only one we will need. There are two natural constructions that, given
Θ, yield a Lie algebra over K:

• we can first consider the group Θ|K := ResE/K(Θ), which is by construc-
tion an algebraic group over K, and take its Lie algebra h = Lie (Θ|K);
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• or we can take the Lie algebra g := Lie (Θ), which is a vector space
over E, forget its structure as E-vector space and simply regard it as a
K-vector space. This gives a K-Lie algebra (keeping the same bracket).

In this case we will write ResE/K (g), ResE/K being the forgetful functor
LieE → LieK .

The important fact about these construction is that they actually yield
the same object:

Theorem 1.1.3. With the above notation, h ∼= ResE/K (g)

Definition 1.1.4. We will refer to ResE/K (g) as ‘the Lie algebra of Θ re-
garded (as a Lie algebra) over K’.

Before proving the theorem we need to give a more explicit description of
ResE/K (Θ).

Suppose Θ = Spec(A), where

A ∼=
E[x1, . . . , xr]

I

is a finitely generated E-algebra, I = (f1(X), . . . , fs(X)) is an ideal of E[X]
and X denotes the multivariable x1, . . . , xr.

Fix a separable closure K of K and denote σ1, . . . , σn the different embed-
dings of E in K; let furthermore M be the composite of E1 = σ1(E), . . . , En =
σn(E) inside K. We can then define Aσi := A⊗E,σiM and form the E-algebra

A = Aσ1 ⊗M Aσ2 ⊗M . . .⊗M Aσn .

In order to fix notations, write Aσi = M [xi,1, . . . , xi,r]/I
σi , where Iσi is

given by Iσi = (fσi1 (Xσi) , . . . , fσis (Xσi)) and Xσi is a shorthand for the mul-
tivariable xi,1, . . . , xi,r.

Note that A is then given by M [Xσ1 , . . . , Xσn ] / (Iσ1 + · · ·+ Iσn).

The Galois group G = Gal(M/K) acts on A as follows: for every τ ∈
Gal(M/K) and every i = 1, . . . , n, the morphism τ ◦ σi is an embedding of
E in K, hence it is one among the σj ’s. Write ji for the unique index j such
that σj = τ ◦ σi.

Let τ permute the variables by the rule τ · (Xσi) = Xσji ; together with the
natural action of τ on M , this gives A the structure of a G-module. We can

then consider the K-algebra A
G

, and it is known (see for example [Wei82],

pages 4-9) that A
G

represents ResE/K (Θ).
We shall also need a simple lemma:

Lemma 1.1.5.
A
G ⊗K M ∼= A
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Proof. Fix a base α1, . . . , αn of E over K. Then, for each l = 1, . . . , r and
each j = 1, . . . , n, the element

wj,l =

n∑
i=1

ασij xi,l

is stable under the given Galois action: indeed, for any τ ∈ G, if ji is again
the unique index such that τ ◦ σi = σji , we have

τ

(
n∑
i=1

ασij xi,l

)
=

n∑
i=1

α
(τ◦σi)
j xτi,l =

n∑
i=1

α
σji
j xji,l,

and since i 7→ ji is simply a permutation, this element is the same as the one
we started with.

Now the matrix S =
(
ασij

)
i,j=1,...,n

is invertible (in M), so every variable

xi,l can be written as an M -linear combination of the elements wj,l ∈ A
G

, i.e.,

A
G ⊗M → A is surjective.

We can finally prove Theorem 1.1.3:

Proof. By [Hum81], Theorem on page 65, the Lie algebra h of Spec
(
A
G
)

can

be identified to the set of K-derivations on the algebra of regular functions

on Spec
(
A
G
)

, and since this scheme is affine the regular functions are simply

A
G

.
By the same result, g is the set of E-linear derivations on A; we can

therefore define a homomorphism of Lie algebras over E

ϕ : Der(A) → Der
(
A
)

δ 7→
n∑
i=1

id⊗ . . .⊗ id⊗ δi︸︷︷︸
ith place

⊗id⊗ . . .⊗ id,

where δi is δ ⊗E,σi id ∈ Der (Aσi).

Observe that if δ is anyK-linear derivation andm ∈M , thenm is algebraic
over K, hence it admits a minimal separable polynomial p(x) ∈ K[x]. By
writing

0 = δ(0) = δ (p(m)) = δ(m) · p′(m),

and using p′(m) 6= 0 by separability, we get δ(m) = 0, hence δ is M -linear.

To make things a little more explicit, notice that δj acts on an element aj
of Aσj , represented as a polynomial

aj =
∑

I multi-index

mI (Xσj )I ,
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as
δj (aj) =

∑
I

mIσj
(
δ
(
XI
))

(notice that δ
(
XI
)
∈ E, and σj maps E in M).

Let now τ be an element of G, and suppose the indices kj are chosen in
such a way that τ ◦ σkj = σj . Then δj ◦ τ

(
akj
)

= τ ◦ δkj
(
akj
)
, since for any

element
akj =

∑
I multi-index

mI

(
X
σkj
)I ∈ Aσkj

we have

δj

(
τ

(∑
I

mI

(
X
σkj
)I))

= δj

(∑
I

τ(mI) (Xσj )I
)

=
∑
I

τ(mI)σj
(
δ
(
XI
))

and

τ

(
δkj

(∑
I

mI

(
X
σkj
)I))

= τ

(∑
I

mIσkj
(
δ
(
XI
)))

=
∑
I

τ(mI)(τ ◦ σkj )
(
δ
(
XI
))
,

so the two expressions agree, since τ ◦ σkj = σj . It immediately follows that

ϕ(δ) is G-equivariant, so ϕ(δ) induces a derivation on A
G

and we can consider

ϕ as a map Der(A)→ Der
(
A
G
)

.

It is also easy to see that ϕ : Der(A) → Der
(
A
)

is injective: let δ be a
non-zero derivation on A and a be an element of A such that δ(a) 6= 0. Then
a⊗σi 1 is a non-zero element of Aσi such that δi(a⊗ 1) 6= 0, and therefore

ϕ(δ)

1⊗ . . .⊗ 1⊗ (a⊗σi 1)︸ ︷︷ ︸
ith place

⊗1⊗ . . .⊗ 1

 =

= 1⊗ . . .⊗ 1 . . . δi (a⊗σi 1)⊗ 1⊗ . . .⊗ 1 6= 0,

the first equality holding because every derivation δj for j 6= i acts on the

constant 1, thus yielding zero. Now suppose ϕ(δ) is trivial on A
G

; by Lemma

1.1.5, we have A
G ⊗M = A, hence by M -linearity ϕ(δ) is trivial on A. It

follows that ϕ : Der(A)→ Der
(
A
G
)

is injective.

Finally, we have

Lie
(
ResE/K(Θ)

)
⊗K K ∼= Lie

(
ResE/K(Θ)⊗K K

)
∼= Lie

(
Θn
K

) ∼= (Lie
(
ΘK

))⊕n
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∼=
(
Lie (ΘE)⊗E K

)⊕n ∼= g⊕n ⊗E K,

hence

dimK h = dimK

(
Lie
(
ResE/K(Θ)

))
= dimK

(
Lie
(
ResE/K(Θ)

)
⊗K K

)
= dimK

(
g⊕n ⊗E K

)
= dimE g⊕n = n dimE g = dimK g,

so - comparing dimensions - the injective morphism ϕ : ResE/K g → h must
be an isomorphism.

1.1.4 Remarks on the extension-of-scalars functor

Let E be a number field and let V be an E-vector space. We want to study
what kind of extra structure V ⊗Q C acquires from V being a vector space
over E (and not simply over Q).

Let Σ = Σ(E) denote the set of embeddings E ↪→ C. It is a basic fact
from algebraic number theory the existence of an isomorphism

E ⊗Q C → CΣ

e⊗ z 7→ (σ(e)z)σ∈Σ

of vector spaces over E, where the action of E is the obvious one on the left
and on the right is given by

e · (z1, . . . , zn) = (σ1(e)z1, . . . , σn(e)zn) ∀e ∈ E,∀ (z1, . . . , zn) ∈ CΣ.

Fixing an E-base of V yields an E-linear isomorphism V ∼= E⊕k for a
certain k, so we have a chain of isomorphisms of vector spaces

V ⊗Q C ∼=
(
E⊕k

)
⊗Q C ∼= (E ⊗Q C)⊕k ∼=

(
Ck
)Σ

,

where, again, E acts on the right through its different embeddings.

An equivalent, coordinate-free construction goes as follows: we have an
isomorphism V ⊗Q C ∼=

⊕
σ Vσ, where Vσ is the complex vector subspace of

VC given by

Vσ := {v ∈ VC|e · v = σ(e)v ∀e ∈ E} .

Note that it follows from the above that all the spaces Vσ are of the same
complex dimension. In fact, another equivalent description of the spaces Vσ
can be given as follows: Vσ is canonically isomorphic to V ⊗E,σ C, the iso-
morphism being given by

V ⊗E,σ C → Vσ

v ⊗ z 7→ πσ (v ⊗ 1) · z,
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where πσ : V → Vσ is the projection.

Suppose now we are given an E-bilinear form ϕ : V ×V → E. We can con-
sider ϕ as element of HomE (V ⊗E V,E) ∼= V ∗⊗E V ∗. By again taking tensor
products with C over E (with respect to a fixed embedding σ : E ↪→ C) we
get an element ϕσ := ϕ⊗1 ∈ V ∗⊗E V ∗⊗E,σC ∼= (V ∗ ⊗E,σ C)⊗C (V ∗ ⊗E,σ C),
which again we interpret as a C-bilinear form Vσ × Vσ → C. Moreover, ex-
tending scalars between fields carries non-degenerate forms to non-degenerate
forms (this can be shown for example by computing determinants).

On the other hand, taking tensor products over Q yields a bilinear form
ϕC : VC×VC → E⊗QC ∼= CΣ, and identifying VC with

⊕
σ Vσ we see that ϕC

is simply the collection of the |Σ| different forms ϕσ, one on each factor Vσ.

Finally, for our applications it will be useful to observe here that if a Q-
algebraic group G acts on V preserving ψ and commuting with E, then clearly
GC acts on VC preserving ψC; then

• the spaces Vσ, for various σ’s, are GC-stable, since the actions of GC and
E commute (take any v ∈ Vσ: then g · v still belongs to Vσ if and only
if for every e ∈ E we have e · g · v = σ(e)(g · v), and this is clear, since
g · e · v = g · (σ(e)v) = σ(e)g · v, the last two equalities holding since the
actions of GC, E and C commute)

• preserving ϕC amounts to preserving each form ϕσ, so each representa-
tion Vσ of G comes equipped with a G-invariant form, that is symmetric
(resp. skew-symmetric) exactly when ϕ is.

1.1.5 The Deligne torus

The Deligne torus S is the R-algebraic group ResC/R(Gm,C). By definition
of the Weil restriction of scalars we have

S(R) = Gm,C (R⊗R C) = Gm(C) = C∗

and

S(C) = Gm,C (C⊗R C) = C∗ × C∗.

Definition 1.1.6. The weight cocharacter is the cocharacter

w : Gm,R → S

that induces the natural inclusion R∗ ↪→ C∗ at the level of R points. More

explicitly: S is represented by the affine algebra R
[
a, b, 1

a2+b2

]
, Gm.R is rep-

resented by R
[
x, 1

x

]
, and w is given at the level of algebras by the unique map

sending b to 0 and a to x.
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For the Deligne torus S, the C-points are given by S(C) = (C⊗R C)∗ ∼=
C∗ × C∗, so the character group of S is free of rank 2. It is generated by two
elements z, z̄ that induce respectively the identity and complex conjugation
on R-points:

C∗ = S(R) ↪→ S(C)
z,z̄−→ Gm,C(C) = C∗.

Remark 1.1.7. To avoid possible confusions, it is better to write down expli-
citly the characters z, z̄ and clarify the identifications among all the objects
we will have to deal with. In particular, the identifications we use can be
summarized by the following diagram:

C∗ ∼= S(R) ↪→ S(C) ∼= C∗ × C∗ z−→ Gm,C(C) = C∗

a+ ib 7→

(
a b

−b a

)
7→

(
a b

−b a

)
7→ (a+ ib, a− ib) 7→ a+ ib.

Note furthermore that for F = R or C we can identify

Hom

(
R
[
a, b,

1

a2 + b2

]
,F
)
∼= GL2(F)

by associating to a morphism ϕ the matrix

(
ϕ(a) ϕ(b)

−ϕ(b) ϕ(a)

)
. Finally, observe

that

Hom

(
R
[
a, b,

1

a2 + b2

]
,C
)
→ C∗ × C∗(

a b

−b a

)
7→ (a+ ib, a− ib)

is well defined, since both a + ib and a − ib are nonzero (as a2 + b2 = (a +
ib)(a− ib) is nonzero).

The norm character Nm : S → Gm,R is given by zz̄; equivalently, it is
the group morphism induced by the algebra map

R
[
x, 1

x

]
→ R

[
a, b,

1

a2 + b2

]
x 7→ a2 + b2.

Finally, define µ to be the only cocharacter

µ : Gm,C → S

such that z̄ ◦ µ ≡ 1 and z ◦ µ is the identity of Gm,C. µ is given on C-points
by µ(a) = (a, 1) ∈ C∗ × C∗ = S(C).



1.1. ALGEBRAIC GROUPS 13

Remark 1.1.8. Giving a Hodge structure of weight m on a Q-vector space V
is equivalent to giving a homomorphism of algebraic groups over R

h : S→ GL(VR)

such that h ◦ w : Gm,R → GLR(V ) is given on R-points by

x ∈ Gm,R(R) 7→ x−m IdV ∈ GLR(V ).

If we start with a representation of S in GL(VR) and extend scalars to C,
we obtain

V ⊗Q C ∼= VR ⊗R C ∼=
⊕
χ

Vχ,

where the last sum runs over all characters of SC and the (generalized) eigen-
space Vχ is given by

{v ∈ VC|g · v = χ(g)v ∀g ∈ S(C)} .

This last isomorphism arises since every representation of a torus over
an algebraically closed field splits as a direct sum of eigenspaces, each one
corresponding to a character. Now the characters of SC are of the form zpz̄q,
therefore the above decomposition can be rewritten as

V ⊗Q C ∼=
⊕

(p,q)∈Z2

V p,q,

where (by convention) V p,q is the space of vectors on which SC acts through
multiplication by z−pz̄−q. As the real points x act through multiplication by
x−m, we see that a necessary condition for a pair (p, q) to correspond to a
non-trivial V p,q is

x−px̄−q = x−m ∀x ∈ R,

i.e. p + q = m. As h is defined over R, we have the equality τ · h = h,
where τ is the nontrivial automorphism in Gal (C/R) and it acts on h via
τ · h := τ ◦ h ◦ τ−1 = τ ◦ h ◦ τ . It follows that if v ∈ V p,q, then

h(z)v̄ = τh(z)τ2(v) = τh(z)v = τ
(
z−pz̄−qv

)
= z−q z̄−pv̄,

so V p,q ⊂ V q,p and V q,p ⊂ V p,q. Since complex conjugation induces an auto-
morphism of VC, this readily implies V p,q = V q,p for every pair p, q, thus giving
the required Hodge structure on V .

On the other hand, if V admits a Hodge structure of weight m, then we get
a representation of SC on VC by declaring that it acts through the character
z−pz̄−q on V p,q. We now need to check that this representation comes from
a real representation, but this follows immediately from V p,q = V q,p by the
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same calculation as above. More precisely, we can observe that τ exchanges
the two characters of SC (since it clearly exchanges them at the level of R-
points), and write any v ∈ VC as a linear combination of vectors vp,q ∈ V p,q.
For any vector w belonging to an eigenspace V p,q we then have

h(z1, z2)w = z(z1, z2)−q z̄(z1, z2)−pw = z(z1, z2)−pz̄(z1, z2)−qw = τ◦h(z1, z2)w,

so that h commutes with τ and hC comes from a real representation h.
Moreover, if x is real (and nonzero), it acts on any one of the spaces V p,q

as multiplication by z(x)−pz̄(x)−q = x−px−q = x−m, so it acts on the whole
of VC as multiplication by x−m, as we wanted to show.

Definition 1.1.9. Because of the above Remark, giving a Hodge structure
is essentially the same as giving a representation of S. We can therefore
carry all the usual notions from representation theory to the setting of Hodge
structures: in particular, we can identify Hodge structures with the category
of S-representations (over real vector spaces obtained by extension of scalars
from rational V ’s), so that we get natural notions of dual structure V ∨,
tensor product, morphism and sub-Hodge structure.

Definition 1.1.10. Let V be a Hodge structure of weight n. It is customary
to introduce the Weil operator C of V ,

C := h(i) ∈ GL(VR).

Remark 1.1.11. It follows from the definitions that C acts on V p,q ⊂ VC as
multiplication by iq−p, hence(

C2
)
C =

⊕
p+q=n

(−1)q−p IdV p,q =
⊕
p+q=n

(−1)q+p IdV p,q =

=
⊕
p+q=n

(−1)n IdV p,q = (−1)n (Id)VC ,

so C2 = (−1)n IdV .

Moreover, if V,W are two Hodge structures with Weil operators CV , CW ,
and if ϕ : V →W is a morphism of Hodge structures, then

CWϕ(v) = ϕ(CV v) ∀v ∈ VR,

since ϕ is h-equivariant (hence C = h(i)-equivariant).

1.1.6 Quaternion algebras as algebraic groups

Let E be a number field and D be a quaternion algebra over E. Suppose that
D is a skew-field. We then want to interpret D∗ as an algebraic group over
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E, namely, show that the functor

AlgE → Grp

R 7→ (R⊗E D)∗

is representable by a finitely-generated algebra over E.
By [Mil12] (Remark 3.5 on page 22) it is enough to show that the under-

lying set functor is representable. By definition of a quaternion algebra, there
exist α, β ∈ D such that

1. D is generated by α, β as an E-algebra;

2. α2 = a ∈ E, β2 = b ∈ E;

3. αβ = −βα

4. 1, α, β, αβ is a basis of D over E.

An element γ of D can then be represented uniquely as γ = x ·1+y ·α+z ·
β+w ·αβ, which suggests that D could be a subscheme of A4

E . In fact, all we
need to do is give a polynomial characterization of ’being a unit’, which can
be done in terms of the reduced norm. Define N(γ) := x2−ay2−bz2 +abw2

(and f(x, y, z, w) := x2 − ay2 − bz2 + abw2); then γ is a unit if and only if its
reduced norm is not zero.

We are thus led to considering the E-algebra

B := E[x, y, z, w]f(x,y,z,w) = E[x, y, z, w, u]/(f(x, y, z, w)u− 1);

we are going to show that B does represent the desired functor, that is, the
equality HomE(B,R) ∼= (R ⊗E D)∗ (for every E-algebra R). An E-algebra
map from B to R is determined by the images of x, y, z, w (which will again be
denoted x, y, z, w), and correspond to the element x⊗1+y⊗α+z⊗β+w⊗αβ ∈
R⊗E D. Such an element is invertible, since

(x⊗ 1 + y ⊗ α+ z ⊗ β + w ⊗ αβ) (x⊗ 1− y ⊗ α− z ⊗ β − w ⊗ αβ) =

f(x, y, z, w)⊗ 1

is invertible; conversely, any invertible element γ′ = x′ ⊗ 1 + y′ ⊗ α+ z′ ⊗ β +
w′ ⊗ αβ of R ⊗ D gives rise to a map from B to R by sending x, y, z, w to
x′, y′, z′, w′. Note that f(x′, y′, z′, w′) is automatically invertible when γ′ is:
identifying R⊗D with R4 via the basis 1, α, β, αβ, left multiplication by γ′ is
represented by the matrix

Mγ′ =


x′ ay′ −bz′ −abw′

y′ x′ bw′ −bz′

z′ −aw′ x′ ay′

w′ −z′ y′ x′

 ,
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which is invertible exactly when its determinant is. The claim then follows
from detMγ′ = f(x′, y′, z′, w′)2.

1.1.7 Reductive groups

In what will follow we shall make frequent use of the concept of reductive
(algebraic) group, along with a few basic properties these groups enjoy. We
start with some basic definitions:

Definition 1.1.12. An affine group G is unipotent if every nontrivial rep-
resentation V of G admits a nonzero fixed vector, i.e. a v such that

g · v = v ∀g ∈ G.

It is possible to show that, given any smooth algebraic group G over a
field k, there exists a unique maximal smooth connected normal unipotent
subgroup, called the unipotent radical RuG of G. The formation of such
Ru commutes with base change, namely for every field extension K/k we have

(RuG)K = Ru(GK).

Definition 1.1.13. A group G over a field k is reductive if it is smooth,
connected, and RuGk̄ is trivial.

The Lie algebra l of a reductive algebraic group is itself reductive, i.e. it
admits a decomposition l ∼= a ⊕ s with a Abelian and s semisimple. For a
reductive Lie algebra l we will write lss for its semisimple part and lab for its
Abelian part.

In order to state the basic structure theorem for reductive groups we shall
need a few more definitions:

Definition 1.1.14. Let G be an affine group over a field k. Then there exists
a unique maximal smooth connected normal solvable subgroup of G, called
the radical RG of G.

Definition 1.1.15. Let G1, G2, · · · , Gn be subgroups of G. We say that G is
the almost-direct product of the Gi’s, written G = G1 ·G2 · · · · ·Gn, if the
natural map

G1 ×G2 × · · · ×Gn → G

(g1, g2, · · · , gn) 7→ g1g2...gn

is a surjective homomorphism with finite kernel. In particular, this implies
that the Gi’s commute with each other and that each of them is normal in G.

Theorem 1.1.16 ([Mil12], Chapter XVII, Theorem 5.1). Let G be a reductive
group, Z(G) be its center, G′ be its derived subgroup. Then
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• G′ is semisimple;

• the radical of G equals the center of G;

• Z(G) is a torus;

• G is the almost-direct product Z(G) ·G′.

As a corollary we get the following important characterization:

Theorem 1.1.17. For an algebraic group G over a field k of characteristic
zero the following are equivalent:

1. G is reductive;

2. every representation of G is semisimple;

3. G admits at least one faithful semisimple representation.

Proof. (i) implies (ii) via the above Theorem: indeed, let G→ GL(V ) be any
representation of G = Z(G) · G′. Z(G) is a torus, so - when regarded as a
representation of Z(G) - V decomposes as a sum of simple representations,

V ∼=
⊕

Vi.

Z(G) and G′ commute, so each Vi is stable under the action of G′, that is to
say, it is a G′-module. Moreover, G′ is semisimple, hence all its representations
are completely reducible, so we can write

Vi =
⊕
j

Vij

as a direct sum of simple G′-modules. Then

V =
⊕
i,j

Vij

is a decomposition of V into a direct sum of simple G-modules.

Clearly (ii) implies (iii), since every algebraic group admits a faithful rep-
resentation.

Finally, to show that (iii) implies (i), we need one more lemma:

Lemma 1.1.18. Let G be an algebraic group, V be a semisimple representa-
tion of G, U a normal unipotent subgroup. Then U acts trivially on V .
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Proof. If V is the trivial representation there is nothing to show. We can
therefore suppose V 6= (0). Let V U = {v ∈ V |u · v = v ∀u ∈ U}. V U is
nontrivial by definition of unipotent group; it also is a sub-G-module, since -
by normality - for every g ∈ G and for every u ∈ U we have ug = gu′ for a
certain u′ ∈ U . It follows that

u(gv) = g(g−1ug)v = gu′v = gv ∀g ∈ G, ∀u ∈ U,∀v ∈ V U ,

so V U is a sub-G-module as claimed. As the representation V is semisimple,
V U admits a complement W in V ; we want to show that W = 0. If, by
contradiction, we had W 6= 0, then by definition of unipotent group we would
also have WU 6= 0, and taking any w ∈WU \{0} would give the contradiction
w ∈ V U ∩W .

Applying the above lemma to a faithful semisimple representation of G we
find that any normal unipotent subgroup acts trivially on a faithful represent-
ation, hence it is trivial.

1.2 CM fields

Definition 1.2.1. A CM-field is a totally imaginary quadratic extension
of a totally real number field E0, which is called its maximal totally real
subfield.

Proposition 1.2.2. Let E be a number field, L its normal closure, R :=
Hom (E,L) = {ρ1, · · · , ρn} the set of its embeddings in its normal closure.
Fix distinguished embeddings E ↪→ L ↪→ C and identify Hom (E,L) with
Hom (E,C). Denote complex conjugation by τ . Then E is a CM field if
and only if the following hold:

1. for every ρ ∈ R, τρ = ρτ

2. τ induces a non-trivial automorphism of E

Proof. Suppose the two conditions hold. Then E0, the fixed field of E under
the action of τ , satisfies [K : E0] = 2 by Artin’s lemma. Moreover, E0 is
totally real: every embedding σ of E0 in C extends to an embedding ρ of E in
C, so for any κ0 ∈ E0 we have τ(σ(κ0)) = σ(τ(κ0)) = σ(κ0) and σ(κ0) is real.
This shows that E is an imaginary quadratic extension of the totally real field
E0. Moreover, property (1) implies that for every embedding ρ of E in C τ
induces a non-trivial automorphism of E, so no embedding of E can be real
and E is totally imaginary, as we wanted to show.

Conversely, suppose E is CM and let E0 be its maximal totally real sub-
field. Then E can be written as E0[d] with d2 ∈ E0 totally negative, and τ
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is clearly nontrivial on E. Representing an element of E as α + βd, for any
embedding ρ : E ↪→ C we can write ρ(α + βd) = σ(α) + σ(β)ρ(d), where
σ = ρ|E0 . As ρ(d)2 ∈ E0 is real but ρ(d) is not, τ(ρ(d)) = −ρ(d), so

τ (ρ(α+ βd)) = τ(σ(α)) + τ(σ(β))τ(ρ(d)) = σ(α)− σ(β)ρ(d)

clearly agrees with ρ(τ(α+ βd)).

Corollary 1.2.3. The composite of a finite number of CM-fields is CM; in
particular, the normal closure of a CM-field is again a CM-field.

Proof. The conditions in the above Proposition clearly hold for such a com-
posite field.

Corollary 1.2.4. If L is a CM-field, Galois over Q, then complex conjugation
is in the center of the Galois group of L.

Proof. This follows immediately from Proposition 1.2.2, since in this case we
can identify the Galois group of L with the set of morphisms L ↪→ C, and we
know that complex conjugation commutes with such embeddings.

1.3 A few properties of Abelian varieties

Throughout this section letA be an Abelian variety of dimension g and End(A)
be its endomorphism ring. We define the endomorphism algebra of A,
End0(A), to be End(A)⊗Z Q.

1.3.1 Polarizations

Let A∨ be the dual variety of A. A polarization of A is an isogeny λ :
A → A∨. It is known that, over a field of characteristic zero and up to
isogeny, we can always assume A to be isomorphic to A∨ and choose λ to be
an isomorphism: in this case, A is said to be principally polarized. Thanks
to the canonical identification A∨∨ ∼= A, a polarization induces an involution
on End0(A), the Rosati involution, given by

ϕ 7→ ϕ† := λ−1 ◦ ϕ∨ ◦ λ.

Note that the Rosati involution is well-defined even if λ is not an isomorph-
ism, since λ is invertible in the category of Abelian varieties up to isogeny.

The Rosati involution enjoys the following properties:

• (ϕ1 + ϕ2)† = ϕ†1 + ϕ†2 ∀ϕ1, ϕ2 ∈ End0(A);

• (aϕ)† = aϕ† ∀ϕ ∈ End0(A), ∀a ∈ Q;
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• (ϕ1ϕ2)† = ϕ†2ϕ
†
1 ∀ϕ1, ϕ2 ∈ End0(A);

•
(
ϕ†
)†

= ϕ ∀ϕ ∈ End0(A);

• the associated quadratic form f 7→ tr
(
ff †

)
is positive-definite ([BL04],

Theorem 5.1.8), where tr denotes the reduced trace on the Q-algebra
End0(A).

Remark 1.3.1. Suppose F = End0(A) is a CM field. Then there is a choice of
a polarization such that the corresponding Rosati involution induces complex
conjugation on F .

To see this, let ιλ be any Rosati involution, and observe that both ιλ and
complex conjugation are positive involutions, hence they are conjugated under
the action of an internal automorphism of End0(A) by the Skolem-Noether
theorem. The claim then follows because any conjugate of a Rosati involution
is again a Rosati involution.

The same statement holds even if F is simply contained in End0(A), but
it takes a bit more work.

1.3.2 The Albert classification

It is not hard to show that if A is simple, then End0(A) is a skew field.

Division algebras with positive involutions have been completely classified
by Albert (in [Alb34], [Alb35]); in the context of Abelian varieties, the result
is as follows ([Mum70], page 202):

Theorem 1.3.2 (The Albert Classification). Let D := End0(A), L be the
center of D (a number field) and L0 be the subfield of L fixed by the Rosati
involution. Let furthermore e = [L : Q], e0 = [L0 : Q], d2 = dimL(D) and
g = dim(A). Then L0 is a totally real field, [L : L0] is either one or two,
and if [L : L0] = 2, then L is a CM field. Moreover, in this case it is always
possible to choose a polarization λ in such a way that the corresponding Rosati
involution is complex conjugation.

Furthermore, there are only a few possibilities for D, listed in the following
table. The fourth column displays numerical constraints e0, e, d and g must
satisfy; these restrictions are actually somewhat different in characteristic p >
0, but we shall only be concerned with the case of characteristic 0.



1.3. A FEW PROPERTIES OF ABELIAN VARIETIES 21

Type e d Description

I(e0) e0 1 e0|g
D = L, a totally real field of degree e0 over
Q

II(e0) e0 2 2e0|g
D is a quaternion algebra over the totally
real field F , split at all the infinite places
(’totally indefinite quaternion algebra’)

III(e0) e0 2 2e0|g
D is a quaternion algebra over the totally
real field F , inert at all the infinite places
(’totally definite quaternion algebra’)

IV(e0, d) 2e0 any e0d
2|g L is a CM field and D is a division ring of

degree d over L

Remark 1.3.3. A result of Shimura ([Shi63]) implies that all the above actually
appear as endomorphism algebras of Abelian varieties.

If one asks the subtler question of whether there is a simple Abelian variety
A with a given endomorphism algebra, the answer becomes slightly more
complicated. It turns out that there always exists such an A, except for types

III and IV, when the quotient g/(2e) in the first case and
g

2ed2
in the second

case is either 1 or 2 (see [Mum70], page 203); even in this case, a complete
classification result is available (and is again due to Shimura).

In the case of Abelian surfaces, for example, the center of the endomorph-
ism algebra can never contain an imaginary quadratic extension of Q, and
Type III does not arise.





CHAPTER 2
A little representation theory

We recall a few standard definitions and results in the theory of (semi)simple
Lie algebras that will turn out to be of utmost importance in the study of
higher-dimensional Mumford-Tate groups. The main references for this sec-
tion are [Ser01], [Bou08] and [Hum73].

2.1 Definitions

Definition 2.1.1. Let V be a finite-dimensional vector space over R and α
be an element of V . A symmetry with vector α is any linear automorphism
s of V satisfying:

• s(α) = −α;

• the set {v ∈ V |s(v) = v} of fixed points of s is a hyperplane of V .

Clearly, a symmetry with vector α is far from being unique; there is,
however, a simple additional condition under which s is determined by α:

Lemma 2.1.2. Suppose R is a finite subset of V that spans it. Then there is
at most one symmetry with vector α that leaves R invariant.

Proof. Let s1, s2 be two symmetries with the above property. Let s = s1s
−1
2 .

Then on one hand s induces a permutation of R, and since this is a finite set
there exists a certain n ∈ N such that sn is the identity on R, and hence on
V . On the other hand, s acts as the identity on both span(α) and V/Rα, so
its only eigenvalue is 1. This implies that the minimal polynomial of s divides
both xn−1 and (x−1)k for a sufficiently large k, hence it divides x−1, which
forces s = IdV .

23
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Definition 2.1.3. A finite subset R of a real, finite-dimensional vector space
V is said to be a root system (in V ) if the following conditions are satisfied:

(R1) R does not contain 0 and it spans V ;

(R2) for every α ∈ R, there exists a symmetry with vector α leaving R in-
variant. The above Lemma implies that such a symmetry is unique, so
it makes sense to write sα for this symmetry.

(R3) for any two roots α, β ∈ R, sα(β)− β is an integer multiple of α.

The dimension of V is called the rank of V .

Remark 2.1.4. As R is stable under sα we immediately see that, for every root
α, sα(α) = −α is again a root. On the other hand, suppose α, tα are both in
R for a certain 0 < t < 1. Then sα(tα)− tα = −2tα is an integer multiple of
α by condition (R3), so 2t ∈ Z and t = 1

2 .
A root system is said to be reduced if, for every α ∈ R, ±α are the only

roots proportional to α; reduced systems are exactly the ones arising in the
context of semisimple Lie algebras over algebraically closed fields.

Definition 2.1.5. The group W generated by the reflections sα for α varying
in R is called the Weyl group W of the root system, and plays a very
important role in the theory of semisimple Lie algebras.

Remark 2.1.6. Any element w of the Weyl group can be thought of as a
permutation of R, thus giving rise to a group morphism W → SR: this map is
an injection, since R spans V , and the latter group is finite, since R is. This
shows that W is finite.

Proposition 2.1.7. There exists a positive-defined, symmetric, W -invariant
bilinear form on V .

Proof. Fix any positive-defined symmetric bilinear form B on V . Then

(x, y) :=
∑
w∈W

B (wx,wy) ∀x, y ∈ V

is clearly positive-defined, and it is W -invariant since

(gx, gy) =
∑
w∈W

B (wgx,wgy) =
∑

w∈Wg−1

B (wgx,wgy) =

∑
w∈W

B (wx,wy) = (x, y) ∀g ∈W, ∀x, y ∈ V.
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From now on, (·, ·) will denote such a bilinear form and || · || will denote
the associated W -invariant norm on V . This data gives V the structure of a
Euclidean space.

Remark 2.1.8. We know from the definition (property R3) that sα(x)−x = nα
for a certain integer n. The W -invariance of (·, ·) implies

(x, α) = (sα(x), sα(α)) = (x+ nα,−α) = −(x, α)− n(α, α),

so n = −2 (x,α)
(α,α) . We then obtain a integer-valued form 〈y, x〉 = 2 (x,y)

(y,y) . This
form is not symmetric and is linear only in the second argument.

Remark 2.1.9. As 〈α, β〉〈β, α〉 is an integer, writing (α, β) = ||α|| · ||β|| cos(ϕ)
we get 4 cos(ϕ)2 ∈ Z, which gives a finite number of possibilities for ϕ. Listing
such possibilities shows that either 〈α, β〉 = 〈β, α〉 = 0 or

min {|〈α, β〉| , |〈α, β〉|} ≤ 1.

Lemma 2.1.10. If α, β are roots and 〈α, β〉 > 0, then α− β is again a root.

Proof. Combining the previous remark, the hypothesis and the obvious in-
equality 〈α, β〉〈β, α〉 ≥ 0 we see that both 〈α, β〉 and 〈β, α〉 are positive. The
last statement in the previous remark implies that at least one of these val-
ues is 1; since 〈α, β〉 > 0 is equivalent to 〈β, α〉 > 0 and α − β is a root if
and only if β − α is, without loss of generality we can assume 〈α, β〉 = 1. It
follows that R, being stable under both sα and central symmetry, contains
−sα(β) = − (β − 〈α, β〉α) = α− β.

The previous lemma, while useful in itself, will also be crucial in order to
justify the following definition of direct sum of root systems.

Definition 2.1.11. Let R be a root system in V , and suppose V can be
written as a direct sum V1 ⊕ V2 in such a way that R ⊂ V1 ∪ V2. Let Ri be
the intersection R ∩ Vi: V is then said to be the direct sum of (V1, R1) and
(V2, R2).

If V can be written as a direct sum only trivially - i.e. with V1 = {0} or
V2 = {0} - then it is said to be irreducible.

In order for the previous Definition to make sense, we need to check that
each (Vi, Ri) is a root system. This is true, and moreover V1 is automatically
orthogonal to V2 with respect to any W -invariant symmetric bilinear form on
V .

Proof. Clearly a root α belongs to Ri if and only if −α does. Let now α (resp.
β) be an element of R1 (resp. R2). Since α − β does not belong to V1 ∪ V2,
it does not belong to R, hence the previous Lemma implies (α, β) ≤ 0. Since
the same applies to α,−β we find that (α, β) = 0.
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Let W1,W2 be the spans of R1, R2 respectively. W1 and W2 are orthogonal
by the above, and on the other hand their sum is all of V , since R spans V .
We deduce V = W1 ⊕W2, and since Wi ⊆ Vi we get Wi = Vi, so Ri spans Vi
and V1 is orthogonal to V2.

Finally, for any α ∈ R1 the symmetry sα preserves R2 (since for any
β ∈ R2 we have sα(β) = β − 〈α, β〉α = β), hence it preserves V2. As V1 is the
orthogonal complement of V2 in V and sα is an isometry for the given scalar
product, sα must preserve V1, hence sα(R1) ⊂ R ∩ V1 = R1. This completes
the verification that (Vi, Ri) is a root system.

Definition 2.1.12. A base of a root system (V,R) is a subset ∆ = {α1, ..., αl}
of R that is a basis for V and such that every α ∈ R can be written (uniquely,
since ∆ is a base) as a combination of the αi’s with integral coefficients, all
non-negative or non-positive.

Even though it is not immediate from the definition, a base always exists,
and moreover the set of all the bases is acted upon by the Weyl group in a
simply transitive fashion. A choice of ∆ induces a partial ordering on R, given
by λ � µ if and only if λ−µ can be written as a non-negative combination of
elements of ∆. Furthermore, it turns out that giving a base ∆ is equivalent
to giving a set of positive roots R+, i.e. a subset of R with the following
two properties:

• α ∈ R+ ⇔ −α /∈ R+;

• If α, β ∈ R+ and α+ β ∈ R, then α+ β ∈ R+.

The correspondence between bases and positive roots is given as follows:

• given a base ∆, an admissible set of positive roots is given by those roots
that can be written as a non-negative linear combination of elements in
∆;

• given a choice for R+, a base is given by the set of positive roots that
cannot be written as the sum of two positive roots (the so-called simple
roots).

Bases turn out to be closely related to the following geometric object:

Definition 2.1.13. For every α ∈ R let Pα be the hyperplane fixed by sα.

Then V \∪α∈RPα has a finite number of connected components, called the
Weyl chambers of the root system.
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It is possible to show that bases are in 1-to-1 correspondence with Weyl
chambers, and in particular the action of W on the Weyl chambers is simply
transitive. This implies that for any fixed chamber C, there is a unique w0 ∈
W , called the opposition involution (with respect to the given chamber),
sending C to −C. It can happen that the opposition involution is simply given
by x 7→ −x, but this is not always the case.

In what follows, ’opposition involution’ will always mean the one associated
to the Weyl chamber pertaining to a given base ∆ = {α1, . . . , αl}.

For irreducible root systems the ordering induced by a base has the fol-
lowing useful property:

Proposition 2.1.14. Let (V,R) be an irreducible root system and fix a base
∆. Then the ordering induced by ∆ on R admits a unique maximal element
H, which is called the longest root of R.

Writing H =
∑

α∈∆ cαα for the expression of H in terms of the base we
also have cα ≥ 1∀α ∈ ∆.

It is also customary to introduce the notion of coroot: for any α ∈ R, the
coroot α∨ is defined to be α∨ := 2

(α,α)α.

Remark 2.1.15. Note that (β, α∨) = 2 (α,β)
(α,α) = 〈α, β〉.

Given a root system (V,R), the set R∨ = {α∨|α ∈ R} again defines a root
system (V,R∨), called the dual root system, with Weyl group canonically
isomorphic to the Weyl group of (V,R). In order to classify representations
of simple Lie algebras (that are naturally associated with root systems) it is
useful to introduce the notion of weight: a weight for the root system (V,R)
is a λ ∈ V such that (λ, α∨) is an integer for every root α. The weights form
a lattice in V , called the weight lattice P (R) of (V,R).

The ordering on the roots gives rise to a notion of ’positivity’ on the weights
as follows: fix a base ∆ = {α1, . . . , αl} of R. Then a weight λ ∈ P (R) is said
to be dominant if

(λ, α∨) ≥ 0 ∀α ∈ ∆,

or, equivalently, if the same inequality holds for every root α positive with
respect to the order induced by ∆.

As {α∨|α ∈ ∆} is a basis of V , it admits a dual basis ωj with respect to
(·, ·); it is clear from the definitions that these ωj ’s are weights and that they
are in fact dominant. We then define

P++(R) :=

l⊕
i=1

Nωi,

the set of dominant weights of (V,R), and we call the ωj ’s the fundamental
dominant weights (with respect to the given choice of positive roots).
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Finally, the Cartan matrix of the root system (V,R) (relative to a base
∆ = {α1, . . . , αl}) is Cij := 〈αi, αj〉.

Note that the definition of the Cartan matrix depends both on ∆ and on
the ordering of the elements of the base; while changing the ordering of the
elements of ∆ amounts to conjugating the Cartan matrix by a permutation
matrix, choosing a different base does not change the Cartan matrix (up to
permutation), since any two bases are conjugated under the Weyl group and
the numbers 〈α, β〉, being ratios of scalar products, are invariant under the
action of the Weyl group.

It can be shown that a root system can be reconstructed (up to isomorph-
ism) from its Cartan matrix, which turns out to always be nonsingular.

Remark 2.1.16. From the fact that the Cartan matrix has integer coefficients
we can easily prove that each ωi is a linear combination of α1, . . . , αl with
rational coefficients: write ωj =

∑l
i=1 djiαi for the expression of ω in terms

of the base. Then by definition of a dual basis we have

δjk =
(
ωj , α

∨
k

)
=

l∑
i=1

dji
(
αi, α

∨
k

)
=

k∑
i=1

dji〈αk, αi〉 =

k∑
i=1

djiCki,

or, in matrix terms, Id = DCt, where D is the matrix whose entries are the
dji’s and C is the Cartan matrix. It then follows from Cramer’s formula that

D =
(
Ct
)−1

has rational coefficients, and in fact the unique denominator
appearing is the determinant of C.

2.2 Root systems and representation theory

Let g be a (nonzero) semisimple Lie algebra over an algebraically closed field
(of characteristic zero). It can be shown that g admits non-zero subalgebras
consisting entirely of semisimple elements; any such subalgebra is said to be
toral, and is automatically Abelian. A maximal toral subalgebra of g is called
a Cartan subalgebra. Fix such a subalgebra H. The adjoint represent-
ation of g is given by

g → End (g)

g 7→ [g, ·] ,

and it can be shown that ad(h) is diagonalizable for every h in H. Moreover,
since H is Abelian, so is ad(H), which implies - by a standard result in linear
algebra - that all the endomorphisms in ad(H) can be diagonalized simultan-
eously. g can therefore be written as the direct sum of a certain number of
common generalized eigenspaces gλ := {x ∈ g|[h, x] = λ(h)x ∀h ∈ H}, where
λ is a linear functional on H.
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Note that g0 is simply the centralizer of H in g, which can be shown to
equal H. Let R be the set of λ’s that correspond to non-trivial generalized
eigenspaces. We then have the decomposition

g ∼= H ⊕
⊕
λ∈R

gλ.

If we let EQ be the Q-subspace of H∨ spanned by R, then R⊗ 1 is a root
system in E = EQ⊗QR; moreover, two semisimple Lie algebras corresponding
to isomorphic root system are isomorphic. In particular, the decomposition of
a semisimple Lie algebra as direct product of its simple factors corresponds to
the decomposition of the associated root system as direct sum of irreducible
systems. In turn, irreducible root systems have been classified completely, and
- apart from five exceptional cases - fall into four infinite families.

The correspondence between root systems and simple Lie algebras is de-
scribed by the following table, where the subscript in the name of the root
system is the rank and the inequalities are necessary in order to avoid re-
petitions (there are some so-called ’exceptional isomorphisms’ between Lie
algebras of low rank)

Lie algebra Root system |R| Weyl group

sll+1, l ≥ 1 Al n(n+ 1) Sl+1

so2l+1, l ≥ 2 Bl 2n2 (Z/2Z)l o Sl
sp2l, l ≥ 3 Cl 2n2 (Z/2Z)l o Sl
so2l, l ≥ 4 Dl 2n(n− 1) (Z/2Z)l−1 o Sl
e6 E6 72 Of order 27 34 5

e7 E7 126 Of order 210 34 5 7

e8 E8 240 Of order 214 35 52 7

f4 F4 48 Of order 27 32

g2 G2 12 D6 (dihedral group)

The four infinite families of simple Lie algebras can be easily described as
matrix algebras with the Lie bracket being given by the usual commutator:

• sll+1: traceless matrices of rank l + 1.

• so2l, so2l+1: skew-symmetric matrices of rank 2l, 2l + 1.

• sp2n: let J be the matrix

(
0 In

−In 0

)
, where In is the n × n identity

matrix. Then sp2n is the set of 2n×2n matrices A such that JA+ATJ =
0.
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These four families are collectively called ’the classical algebras’, and their
associated root systems are said to be ’of classical type’.

We now turn to the classification of representations of semisimple Lie al-
gebras over C (or, more generally, an algebraically closed field of characteristic
zero). Let g be a semisimple Lie algebra, H a fixed Cartan subalgebra, R the
associated root system, ∆ = {α1, . . . , αl} a base of R and W the Weyl group.
Let V be a module over g. Restricting the given action to H we get the notion
of weight spaces Vλ, where λ is a linear functional on H:

Vλ = {v ∈ V |h · v = λ(h)v ∀h ∈ H} .

Those λ’s such that Vλ is non-trivial are traditionally called the weights of
the representation. The sum V ′ :=

∑
λ∈H∨ Vλ is always direct, and V ′ is a sub-

module of V ; furthermore, if V has finite dimension, then V = V ′. Moreover,
Weyl’s complete reducibility theorem implies that every finite-dimensional g-
module is completely reducible, hence irreducible representations play a prom-
inent role in the finite-dimensional case.

Definition 2.2.1. Recall that we have a decomposition g ∼= H ⊕
⊕

λ∈R gλ.
The Borel subalgebra of g (associated to H and ∆) is

B := H ⊕
⊕
λ∈R+

gλ;

its derived algebra is N =
⊕

λ∈R+ gλ.
A highest weight vector of V is a non-zero vector v belonging to a weight

space Vλ killed by all the elements in N , i.e., such that x · v = 0 ∀x ∈ N . In
this case we also say that λ is a highest weight of V , and if V is generated
by v as a g-module, then we say that V is standard cyclic of weight λ.

The terminology ’highest weight’ is justified by the following theorem:

Theorem 2.2.2. Let V be a standard cyclic g-module of highest weight vector
v ∈ Vλ. Then:

• V is the direct sum of its weight spaces;

• the weights of V are of the form λ−
∑l

i=1 kiαi, where each ki is a non-
negative integer;

• each weight space Vµ is finite-dimensional and dimVλ = 1;

• each submodule of V is the direct sum of its weight spaces;

• V is indecomposable (i.e. it cannot be written as the direct sum of two
proper submodules); it admits a unique maximal proper submodule and
a corresponding unique irreducible quotient;
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• every nonzero homomorphic image of V is again standard cyclic of
weight λ.

The main results concerning existence and uniqueness of representations
are as follows:

Theorem 2.2.3. 1. Every finite-dimensional g-module admits a highest
weight vector.

2. Let V be standard cyclic of weight λ and suppose furthermore that V
is irreducible. Then there is (up to scalar multiples) only one highest
weight vector.

Combining this with the previous point, we see that every irreducible rep-
resentation (of finite dimension) is standard cyclic and admits a unique
highest weight.

3. If V1, V2 are standard cyclic of weight λ and irreducible, then they are
isomorphic.

4. For each λ ∈ H∨ there exists a (unique) standard cyclic irreducible mod-
ule of highest weight λ, denoted V (λ).

5. The map λ 7→ V (λ) establishes a bijection between the set of dominant
weights of H and the set of isomorphism classes of finite-dimensional,
irreducible g-modules.

2.3 Self-dual representations

We briefly recall a few results on self-duality properties for Lie algebras repres-
entations over the complex numbers (or more generally an algebraically closed
field F of characteristic zero). Recall that if ρ : g→ gl(V ) is a representation,
than the dual representation of ρ is defined by the action

(g · ψ) (v) = −ψ(ρ(g)v) ∀ψ ∈ V ∗, ∀v ∈ V, ∀g ∈ g.

A representation is said to be self-dual if it is isomorphic to its own dual.
A finer notion is given by the following

Definition 2.3.1. Let ρ : g → gl(V ) be a Lie algebra representation, 〈·, ·〉 :
V × V → F be a bilinear form on V . 〈·, ·〉 is said to be ρ-invariant, or
preserved by ρ, if

〈gv, w〉+ 〈v, gw〉 = 0 ∀v, w ∈ V, ∀g ∈ g.

A representation ρ is said to be orthogonal (resp. symplectic) if there
exists a non-degenerate, symmetric (resp. skew-symmetric) bilinear form pre-
served by ρ.
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An immediate consequence of the definition is that orthogonal and sym-
plectic representations are automatically self-dual: if 〈·, ·〉 is a ρ-invariant,
non-degenerate bilinear form, then the map

ϕ : V → V ∨

v 7→ 〈v, ·〉

is an isomorphism of g-representations. Indeed, it is clear that ϕ is an iso-
morphism of vector spaces, and the equality

ϕ(gv) = 〈gv, ·〉 = −〈v, g·〉 = g · (〈v, ·〉) = gϕ(v)

shows that it is a morphism of representations. Over the algebraically closed
field F, Schur’s lemma implies that every irreducible, self-dual representation
admits a non-trivial, invariant bilinear form:

Lemma 2.3.2. A finite-dimensional irreducible Lie algebra representation
over F is self-dual if and only if it is either orthogonal or symplectic (but
not both).

Proof. We have already shown the ’if’ part. For the other implication, let
ρ : g→ gl(V ) be a finite dimensional, self-dual representation and ϕ : V → V ∨

be a g-isomorphism. Then the bilinear form

〈v, w〉ϕ := ϕ(v)(w)

is g-invariant, since

〈gv, w〉+ 〈v, gw〉 = ϕ(gv)(w) + ϕ(v)(gw) =

= (g · ϕ(v)) (w) + ϕ(v)(gw) = −ϕ(v)(gw) + ϕ(v)(gw) = 0.

In fact, it is easy to check that the space Homg (V, V ∨) and the space
Bg(V ) of g-invariant bilinear forms on V are isomorphic to each other via the
above association ϕ 7→ 〈·, ·〉ϕ. If V is irreducible and isomorphic to its dual,
then clearly V ∨ is irreducible, too, and Schur’s lemma applies to yield

dimF (Bg(V )) = dimF
(
Homg

(
V, V ∨

))
= 1.

In particular, every g-invariant bilinear form that is not trivial is non-
degenerate, since it induces an isomorphism V → V ∨. Let now b(v, w) be any
non-zero, g-invariant bilinear form. Define b∗(v, w) := b(w, v). By the above,
there exists c ∈ F such that b∗ = cb. Then

b(v, w) = b∗(w, v) = cb(w, v) = cb∗(v, w) = c2b(v, w) ∀v, w ∈ V,

hence c = ±1 and b is either symmmetric or skew-symmetric. Moreover, by
non-degeneracy, it cannot be both, unless char(F) = 2, when the two notions
coincide.
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We now turn to studying self-dual representations of semi-simple algebras.
We first need a definition:

Definition 2.3.3. Let ρi : gi → gl(Vi) be a finite family of representations of
Lie algebras gi. The exterior tensor product of the ρi’s, denoted

ρ1 � · · ·� ρn (or V1 � · · ·� Vn when no confusion can arise),

is a representation of the product algebra
n∏
i=1

g1 on the vector space V1⊗· · ·⊗

Vn, the action being given (on the generators) by

(g1, . . . , gn) · (v1 ⊗ · · · vn) =
n∑
i=1

v1 ⊗ · · · ⊗ vi−1 ⊗ ρi(gi)(vi)⊗ vi+1 ⊗ · · · ⊗ vn.

In order to study generic self-dual representations we first state the fol-
lowing structure theorem:

Theorem 2.3.4. For a semisimple Lie algebra k denote by R(k) the set of
isomorphism classes of irreducible representations of k. Let g ∼= g1 × · · · × gn
be a semisimple Lie algebra, decomposed as a product of simple Lie algebras.
Then the map

Ψ :
n∏
i=1

R(gi) → R(g)

(V1, ρ1), · · · , (Vn, ρn) 7→ ρ1 � · · ·� ρn

is a bijection.

Remark 2.3.5. In particular, the order of the factors Vi is important: if V1, V2

are representations of the same algebra g, then the two representations V1�V2

and V2 � V1 of g× g are not isomorphic unless V1
∼= V2.

Proof. This is an almost immediate consequence of the fact that every irre-
ducible representation of a semi-simple Lie algebra is generated by a highest
weight vector. Write Vi(µ) for the irreducible representation of gi with highest
weight µ, and similarly let V (µ) be the irreducible representation of g with
highest weight µ.

Fix Cartan sub-algebras hi of gi, and consider the associated root systems

(h∨i ,Φi). Clearly,
n⊕
i=1

hi is a Cartan sub-algebra of g, and a choice of bases for

the root systems Φi induces a base for the root system associated to h.
Observe now that each weight λ of h can be written uniquely as λ =∑n
i=1 λi, where each λi is a weight of the corresponding hi. It is then easy
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to check that V (λ) is the exterior tensor product V (λ1) � · · · � V (λn): such
a product representation is automatically irreducible, so - in order to prove
that it is isomorphic to V (λ) - it is enough to exhibit a highest weight vector
of weight λ. Such a vector is in fact given by v1 ⊗ · · · ⊗ vn, where each vi is a
highest weight vector for the corresponding V (λi), and so Ψ is surjective.

To show injectivity, observe that - with the above notation - v1 ⊗ · · · ⊗ vn
is a highest weight vector for Ψ(V (λ1), · · · , V (λn)).

Ψ(V (λ1), · · · , V (λn)) is irreducible, so it has a unique line of such vectors:
this means that we can recover λ1, · · · , λn from Ψ(V (λ1), · · · , V (λn)) by taking
a highest weight vector v ∈ Ψ(V (λ1), · · · , V (λn)), computing its weight λ and
decomposing it along the various hi’s. This shows that ψ is injective and
concludes the proof.

Corollary 2.3.6. Let g ∼= g1 × · · · × gn be a semisimple Lie algebra, writ-
ten as the direct product of its simple factors, and let V be an irreducible
representation of g. Then, by the above theorem, we have a decomposition
V ∼= W1 � · · ·�Wn. Suppose that V is self-dual: then each Wi is self-dual.

Proof. We have V ∼= V ∨ ∼= W∨1 � · · ·�W∨n , so

Ψ (W1, · · · ,Wn) ∼= Ψ
(
W∨1 , · · · ,W∨n

)
,

and as Ψ is injective (on n-uples of isomorphism classes) we get Wi
∼= W∨i for

all i.

2.4 Minuscule weights

We now want to introduce the special class of minuscule weights, that will
play a prominent role in what will follow. As a first step we need the notion
of R-saturated set:

Definition 2.4.1. A subset X of P (R) is said to be R-saturated if for every
λ ∈ X, for every root α and every integer i between 0 and (λ, α∨) the weight
λ− iα belongs to X.

Remark 2.4.2. A moment’s thought shows that a R-saturated set is automat-
ically W -invariant, since elementary reflections wα send λ to λ− (λ, α∨)α.

Proposition 2.4.3. Let λ ∈ P (R) be a weight, X(λ) the smallest R-saturated
subset of P (R) containing λ. Recall that V has the structure of a Euclidean
space with respect to a norm || · || that is W -invariant.

Then the following are equivalent:

1. X(λ) = W · λ
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2. All the elements in X(λ) have the same norm

3. For every α ∈ R, ||λ|| ≤ ||λ − tα|| for every integer t between 0 and
(λ, α∨)

4. (λ, α∨) ∈ {−1, 0, 1} ∀α ∈ R.

Proof. The implications (1)⇒ (2)⇒ (3) are trivial from the definitions.
As for the implication (3) ⇒ (4), fix α ∈ R and consider the function

f(t) : t 7→ ||λ − tα||2. f(t) is strictly convex, since α is a root (hence non-
zero). Notice furthermore that

||λ|| = ||sα(λ)|| = ||λ− 〈α, λ〉α|| = ||λ−
(
λ, α∨

)
α||,

so f ((λ, α∨)) = f(0). For any s strictly between 0 and (λ, α∨) we can write
s = t · 0 + (1− t) · (λ, α∨) for a certain t ∈ (0, 1); convexity then yields

f(s) < tf(0) + (1− t)f
((
λ, α∨

))
= f(0).

If | (λ, α∨) | is greater than one, then there exists an integer s in the interval
(0, (λ, α∨)) (resp. ((λ, α∨) , 0), if (λ, α∨) < 0), and the above inequality -
applied to this s - contradicts the hypothesis (3), so (4) must hold.

Finally, assume that (4) holds. As the inclusion W · λ ⊆ X(λ) is tautolo-
gical, we just need to check that W ·λ is R-saturated. Let w ·λ be any element
of W ·λ. We need to show that for every α and every integer i between 0 and

(w · λ, α∨) =
(
λ,
(
w−1α

)∨) ∈ {−1, 0, 1} we have wλ − iα ∈ W · λ. But this

is clear: if (w · λ, α∨) = 0 there is nothing to prove, and if (w · λ, α∨) = ±1,
then sα(w · λ) = w · λ∓ α, as required.

Definition 2.4.4. A weight λ is said to be minuscule if it satisfies the above
equivalent conditions.

Lemma 2.4.5. Assume further that λ ∈ P++(R) \ {0}. Let

H =

l∑
j=1

njα
∨
j

be the longest root of R∨, and let J be the set {j|nj = 1}. Then the following
are equivalent:

(1) λ is minuscule;

(2) λ(H) = 1;

(3) there exists j ∈ J such that λ = ωj.
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Proof. Write λ =
l∑

i=1

uiωi, where each ui is a non-negative integer. Then

(λ,H) =

(
l∑

k=1

ukωk,

l∑
i=1

niα
∨
i

)
=

l∑
i,k=1

niuk
(
ωk, α

∨
i

)
=

l∑
i=1

niui

equals one if and only if exactly one uk is 1 (while all the others are zero)
and the corresponding nk is 1: (2) and (3) are then clearly equivalent to each
other.

On the other hand, as λ is positive, we get

(λ,H) = sup
h∈R+

λ(h∨),

so (λ,H) (which is clearly non-zero) equals 1 if and only if all the scalar
products (λ, h∨) are at most 1, that is, if and only if λ is minuscule (cf.
condition 4 of the previous Proposition).

Combining the classification of simple Lie algebras with the characteriza-
tion (6) of the previous Lemma, it is possible to show the following result (cf.
Chapter 8, Section 3 of [Bou08] and Tables 1 and 2, ibid.)

Theorem 2.4.6. The following table lists all the minuscule weights (along
with other useful informations) for the simple Lie algebras. The ’duality prop-
erties’ column contains 1 if the representation is orthogonal, -1 if it is sym-
plectic, and 0 if it is not self-dual.

Root system Minuscule weight Dimension Duality properties

Al (l ≥ 1) ωr, 1 ≤ r ≤ l
(
l + 1

r

) (−1)r, if r =
l + 1

2

0, if r 6= l + 1

2

Bl (l ≥ 2) ωl 2l
+1, if l ≡ 3, 0 (mod 4)

−1, if l ≡ 1, 2 (mod 4)

Cl (l ≥ 2) ω1 2l −1

Dl (l ≥ 3)

ω1 2l +1

ωl−1, ωl 2l−1

+1, if l ≡ 0 (mod 4)

−1, if l ≡ 2 (mod 4)

0, if l ≡ 1 (mod 2)

E6
ω1

ω6

27

27

0

0

E7 ω7 56 −1
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2.4.1 A useful characterization of minuscule weights

In this section we introduce a useful alternative characterization of minuscule

weights, due to Zarhin (Section 1.1 of [Zar85]). Let λ =
l∑

i=1

ciαi =
l∑

j=1

mjωj

be a dominant weight. By definition, mj is a non-negative integer for each j.
A simple but useful fact is the following:

Lemma 2.4.7. ci is a non-negative rational number for every i = 1, . . . , l.

We shall need a general fact about Euclidean spaces:

Lemma 2.4.8. Let V be a Euclidean space and let (·, ·) denote its positive-
definite scalar product. Suppose v1, . . . , vn is an obtuse basis of V , that is
(vi, vj) ≤ 0 for every pair of different indices i, j.

Then the dual basis v∨i of vi with respect to (·, ·) is acute, i.e. it verifies
(vi, vj) ≥ 0 for every pair of indices.

Proof. We can identify V with Rn endowed with the standard scalar product.
We then proceed by induction on n, the case n = 2 being trivial; also, by the
symmetry of the problem, it is enough to show (v∨1 , v

∨
2 ) ≥ 0. Let e1, . . . , en

be the canonical basis of Rn. Let now A be any orthogonal transformation.
Then

(Av∨i , Avj) = (v∨i , vj) = δij ∀i, j = 1, . . . , n,

so the dual basis of Av1, . . . , Avn is Av∨1 , . . . , Av
∨
n .

Furthermore, (Av∨i , Av
∨
j ) = (v∨i , v

∨
j ), so the base (v∨i )i=1,...,n is acute if

and only if (Av∨i )i=1,...,n is. We can therefore apply an orthogonal A such that
Avn = en and suppose without loss of generality that vn = en.

Let π be the (orthogonal) projection

π : Rn → Rn−1 = {(x1, . . . , xn) ∈ Rn|xn = 0}
(x1, . . . , xn) 7→ (x1, . . . , xn−1, 0).

For a vector v ∈ Rn let (v1, . . . , vn) be its coordinates in the standard basis.
For every i < n, the hypothesis (vi, vn) ≤ 0 implies vni ≤ 0; on the other hand,
for every pair of distinct indices i, j < n we have (π(vi), π(vj)) =

∑n−1
i=1 v

i
iv
i
j =

(vi, vj) − vni vnj ≤ 0, since (vi, vj) ≤ 0 by hypothesis and vni v
n
j is non-negative

(since both factors are non-positive). It follows that w1 = π(v1), . . . , wn−1 =
π(vn−1) is an obtuse basis of Rn−1. Let w∨1 , . . . , w

∨
n−1 be the dual basis of

π(v1), . . . , π(vn−1) with respect to the scalar product on Rn−1.
For any index i < n the last coordinate of w∨i is zero by definition, so

(w∨j , en) = 0 for every j < n, and for any two indices j, k < n we can write

(w∨j , vk) = (w∨j , π(vk)) + wnj v
n
k = (w∨j , π(vk)) =

(
w∨j , wk

)
= δjk.
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By uniqueness of the dual basis, this means that the vectors
{
w∨j

}
j=1,...,n−1

are the first n − 1 elements of the dual basis of v1, . . . , vn, i.e. v∨i = w∨i for
every i = 1, . . . , n− 1. The inductive hypothesis then implies(

v∨1 , v
∨
2

)
=
(
w∨1 , w

∨
2

)
≥ 0,

and we are done.

Proof (Lemma 2.4.7). From Remark 2.1.16 we know that each ωj is a linear
combination with rational coefficients of α1, . . . , αn, so the ci’s are rational.

It is easy to check that for αi, αj ∈ ∆ we have (αi, αj) ≤ 0: suppose by
contradiction (αi, αj) > 0. As clearly αj 6= ±αi, Lemma 2.1.10 implies that

αi−αj is a root, so it admits an expression αi−αj =
∑l

k=1 nkαk where each
nk a non-negative or non-positive integer. As this would give two different
representations of αi (namely αi itself and (αi − αj) + αj), the contradiction
shows that we must have (αi, αj) ≤ 0.

We then have
(
α∨i , α

∨
j

)
≤ 0, and thanks to the previous Lemma we know

that the dual basis {ωi}i=1,...,n verifies (ωi, ωj) ≥ 0.

It follows that for each j = 1, . . . , n the scalar product

(λ, ωj) =

l∑
i=1

mi (ωi, ωj)

is non-negative, hence

0 ≤ (λ, ωj) =

(
l∑

i=1

ci
(αi, αi)

2
α∨i , ωj

)
= cj

(αj , αj)

2

and since (αj , αj) > 0 we deduce cj ≥ 0, as claimed.

Let λ′ be −w0(λ), where w0 is the opposition involution, and write λ′ =∑l
i=1 c

′
iαi. Define l(λ) := min {ci + c′i|i = 1, · · · , l}.

Remark 2.4.9. As all the coefficients ci and c′i are non-negative, l(λ) is positive
for every non-trivial dominant weight λ.

Lemma 2.4.10. l is an integer-valued function.

Proof. Pick any α ∈ R and let w ∈W be the reflection through the hyperplane
orthogonal to α. Write µ =

∑l
i=1 aiωi with ai ∈ Z for a weight. Then

w(µ) = µ− 2
(α, µ)

(α, α)
α = µ− (µ, α∨)α,
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and (µ, α∨) is an integer by definition of weight. Moreover, α itself is a weight,
so µ − (µ, α∨)α is again a weight; furthermore, α is a Z-linear combination
of simple roots. A simple induction (on the number of symmetries involved)
then shows that for any weight µ and any element w ∈W we have

w(µ) = µ−
l∑

i=1

qiαi, qi ∈ Z ∀i.

Applying this to w = w0 and µ = λ we get

l∑
i=1

c′iαi = λ′ = −w0(λ) = −

(
λ−

l∑
i=1

qiαi

)
=

l∑
i=1

qiαi −
l∑

i=1

ciαi,

so ci + c′i = qi ∈ Z, as we wanted to show.

The following proposition can be useful in order to bound from below the
value of l:

Proposition 2.4.11. Let β̃ be the longest root of R∨. Then for every dom-
inant weight λ we have l(λ) ≥ (λ, β̃)

Proof. Let γ =

l∑
i=1

eiαi be a positive root (so each ei is a non-negative integer).

Then the associated reflection sγ ∈W acts as

wγ(λ) = λ− (λ, γ∨)γ = λ−
l∑

i=1

(λ, γ∨)eiαi

It is known that w0(λ) ≺ wγ(λ), so

λ−
l∑

i=1

(λ, γ∨)eiαi � w0(λ)⇒ λ+ λ′ �
l∑

i=1

(λ, γ∨)eiαi,

that in turn implies ci + c′i ≥ (λ, γ∨)ei. For γ = β̃∨ we have ei ≥ 1 for every
index i, so ci + c′i ≥ (λ, β̃) holds for every i and the claim follows.

The importance of l lies in the following property (1.1.2.0 of [Zar85]):

Proposition 2.4.12. Let λ be a dominant weight. Then l(λ) = 1 if and only
if λ is minuscule and (V,R) is of classical type.

Another equivalent characterization of l(λ) is given in the following pro-
position:
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Proposition 2.4.13. Let g be a simple Lie algebra, (V,R) the associated root
system, λ a dominant weight of R and X the small saturated set containing
λ. Then

1. for every non-trivial group morphism ϕ : P (R) → (Q,+) we have
|ϕ(X)| − 1 ≥ l(λ);

2. there exists a group morphism ϕ : P (R) → (Q,+) such that |ϕ(X)| =
l(λ) + 1.

Proof. If λ = 0 the claim is clear, so we can assume that λ 6= 0 and g admits
an irreducible, faithful representation V (λ) having λ as its highest weight.

Let ϕ : P (R) → Q be a non-trivial group morphism. P (R) is a lattice in
V (in particular, it has maximal rank), so identifying V ∼= V ∗ through the
given inner product we find that ϕ is given by ϕ(µ) = α · (µ, γ∨) for a certain
γ ∈ P (R) and a certain constant α ∈ Q.

Replacing ϕ with µ 7→ (µ, γ∨) does not change the cardinalities of the
involved sets, so we can assume that ϕ is indeed given by µ 7→ (µ, γ∨). As X
is stable under the Weyl group, and since the action of W on V is through
isometries, we can replace γ∨ with any W -conjugate. In particular, this means
that we can assume γ ∈ P++(R), since every W -orbit meets P++(R).

We now remark thatX is exactly the set of weights of V (λ) by the structure
theorem for these representations (essentially a consequence of the Poincaré-
Birkhoff-Witt theorem), so we know that for every µ ∈ X there exists a
sequence λ0 = λ, λ1, · · · , λn = µ such that λi− λi+1 is a simple root for every
i = 0, · · · , n− 1.

Let’s now write λ =
∑l

i=1 ciαi and µ = w0(λ) = λ−
∑l

i=1 qiαi, where we
know the qi’s to be integers with the property that l(λ) = infi qi (cf. the proof
of Lemma 2.4.10). In particular, every qi is greater than or equal to l(λ), and
given any γ ∈ P (R) there exists i ∈ {1, . . . , l} such that (αi, γ

∨) 6= 0 (since R
spans V ). On the other hand, for any index j ∈ {1, . . . , l} we see that in the
sequence λ0 − λ1, · · · , λn−1 − λn there are exactly qj terms equal to αj (by
uniqueness of the representation in terms of a base).

Putting everything together we find that

ϕ(X) ⊇ ϕ ({λ0, · · · , λn}) =

=

{
ϕ(λn), ϕ(λn) + ϕ(λn−1 − λn), · · · , ϕ(λn) +

n−1∑
i=0

ϕ(λi − λi+1)

}
,

and for any fixed index j this last set has cardinality at least qj + 1: all
the summands ϕ(λi − λi+1) are non-negative, since they are of the form
(simple root, γ∨) with γ dominant, and if λk−λk+1 = αj , then ϕ(λk−λk−1) >
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0, which implies that for at least qj values of the integer k we have ϕ(λk) 6=
ϕ(λk+1).

Let us now choose an index r realizing the lower bound, i.e. an r such
that l(λ) = qr. Define ϕ to be the homomorphism µ 7→ (µ, ωr). The above
calculation then shows that

|ϕ(X)| = 1 + |{i : λi − λi+1 = αr}| = 1 + qr,

which proves (2).

2.4.2 Computations for Al

To show that the whole theory is in fact very explicit we now determine the
minuscule weights for simple root systems of type Al and check that λ is
minuscule if and only if l(λ) = 1.

We consider the following embedding of the root system Al: let V be the
hyperplane {x1 + · · ·+ xl+1 = 0} of Rl+1, and take as R the set of vectors of
V with integral coordinates and squared norm 2. As a base we take ∆ =
{a1 = e1 − e2, · · · , al = el − el+1}, so that the positive roots are those of the
form ei − ej for i < j. The Cartan matrix associated to this choice is

(C)kl =



2 −1 0 0 · · · 0

−1 2 −1 0 · · · 0
...

0 0 0 −1 2 −1

0 0 0 0 −1 2


,

as it is easy to see:

Cij = 2
(ai, aj)

(ai, ai)
= (ai, aj) = (ei − ei+1, ej − ej+1) =


2, if i = j

−1, if |i− j| = 1

0, otherwise

The Weyl group is generated by the reflections σi along the vectors ei−ei+1,
and σi acts on a vector (x1, · · · , xl+1) as

(x1, · · · , xl+1) 7→ (x1, · · · , xl+1)− 2
((x1, · · · , xl+1), ei − ei+1)

(ei − ei+1, ei − ei+1)
(ei − ei+1) =

= (x1, · · · , xl+1)− (xi − xi+1)(ei − ei+1) = (x1, · · · , xi+1, xi, · · · , xl+1),

i.e. by transposing the ith and (i+ 1)th coordinate. Since transpositions
generate the symmetric group, we deduce that W is isomorphic to Sl+1,
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the full permutation group on l + 1 elements. The Weyl chambers corres-
pond to the choice of a linear orders on the coordinates (for example, in the
case l = 2 the six Weyl chambers are given by {(x1, x2, x3) : x1 > x2 > x3},
{(x1, x2, x3) : x1 > x3 > x2}, and so on), and our base is associated to the
chamber given by x1 > x2 > · · · > xl+1. The opposite involution carries it
to the chamber given by −x1 > −x2 > · · · > −xl+1, i.e. x1 < x2 < · · · <
xl+1. By uniqueness, and since reversing the order of the coordinates (i.e.
(x1, x2, · · · , xl, xl+1) 7→ (xl+1, xl, · · · , x2, x1)) works, this must be the opposi-
tion involution w0.

On the roots, w0 acts as w0(αi) = w0(ei − ei+1) = el+2−i − el+1−i =
−αl+1−i.

Finally, the longest root of R∨ = R is β̃ := e1−el+1 =
∑l

j=1 αj =
∑l

j=1 α
∨
j ,

so thanks to (6) of Lemma 2.4.5 we know that the positive minuscule weights
are exactly the dominant weights ωj .

We now want to check that, for a dominant λ, l(λ) = 1 if and only if λ is
one among the ωj ’s. Write

λ =

l∑
i=1

ciαi =

l∑
i=1

miωi.

If l(λ) = 1, Proposition 2.4.11 yields
(
λ, β̃

)
= 1, so

1 =

 l∑
i=1

miωi,

l∑
j=1

αj

 =
∑
i

mi.

As all the mi’s are non-negative integers, it follows that exactly one of
them equals one while all the others vanish, so λ is one among the ωj ’s, as we
wanted to show.

On the other hand, from the above it is easy to compute

−w0(λ) = −
l∑

i=1

ci (−αl+1−i) =

l∑
i=1

cl+i−1αi,

so

l(λ) = min
i=1,··· ,l

(ci + cl+1−i) .

We want to express the coefficients ci in terms of the integers mi. To this
end, simply note that

mj =

(
l∑

i=1

miωi, α
∨
j

)
=
(
λ, α∨j

)
=

(
l∑

i=1

ciαi, α
∨
j

)
=

l∑
i=1

ci〈αj , αi〉 =

l∑
i=1

Cjici,
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so, writing D for the inverse of the Cartan matrix (or rather, of its transpose
- but in this case C is symmetric, so the two coincide), we have

ci =

l∑
j=1

Dijmj .

It is easy to check that

Dij =


(l + 1− i)j

l + 1
, if i ≥ j

(l + 1− j)i
l + 1

, if j ≥ i

,

so - given any choice (m1, · · · ,ml) for the coefficients of the fundamental
weights - we get

ci + cl+1−i =
l∑

j=1

(Di,jmj +Dl+1−i,jmj) .

Suppose now that λ is minuscule, i.e. that there exists exactly one index
j ∈ {1, · · · , l} such that mj = 1, while all the others are zero. Using D1,k =
l + 1− k
l + 1

and Dl,k =
k

l + 1
, i = 1 gives

c1 + cl =

l∑
k=1

(
l + 1− k
l + 1

+
k

l + 1

)
mj = 1.

As l is integer-valued and strictly positive (see Remark 2.4.9), l(λ) ≤ c1+cl
forces l(λ) = 1, as claimed. This completes the verification of the equivalence
l(λ) = 1⇐⇒ λ is minuscule for the root systems of type Al.





CHAPTER 3
Mumford-Tate and Hodge

groups

Following the unpublished course notes by B. Moonen ([Mooa], [Moob]) we
now introduce the main objects we will have to deal with and prove a few of
their most basic properties.

The first section is dedicated to the definition of the Mumford-Tate and
Hodge groups and their most immediate properties. In 3.2 we introduce the
notion of a polarization for an abstract Hodge structure and derive important
properties enjoyed by polarizable structures.

We also clarify the relation between the abstract notion and its geometric
counterpart, which is sometimes left implicit in the literature, showing in the
process that Hodge structures coming from Abelian varieties are polarizable.

In the following section we then investigate the Hodge group of a product
of varieties, and we conclude the chapter by analyzing, in 3.4, the interactions
among polarizations, the endomorphism algebra and the Hodge group. This
will also lead to introducing the so-called Lefschetz group.

3.1 Definition and basic properties

Throught this section V is a fixed Q-Hodge structure of weight m and

h : S→ GL(VR)

is the associated morphism of algebraic groups.

We introduce here one of the true protagonists of this work:

45
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Definition 3.1.1. The Mumford-Tate group of V , denoted MT (V ), is
the smallest algebraic subgroup of GL(V ) defined over Q such that h factors
through MT (V )R.

It is an exercise in [Mooa] to show that it is possible to give the following
alternative characterization of MT (V ):

Proposition 3.1.2. Let A(V ) be the smallest algebraic subgroup of GL(V )
defined over Q such that hC ◦ µ : Gm,C → GL(VC) factors through AC. Then
A(V ) = MT (V ).

Proof. We have an immediate inclusion A(V ) ⊂ MT (V ): indeed, the very
definition of MT (V ) implies that h factors through MT (V )R, so by extending
scalars to C we find that hC factors through MT (V )C; a fortiori, hC◦µ factors
through MT (V )C, and since A is the smallest subgroup with this property we
must have A(V ) ⊂MT (V ).

On the other hand, A is defined over Q, so it is stable under the action of
Gal

(
Q/Q

)
; in particular, its image in GL(VC) is stable under τ , the complex

conjugation. Write VC =
⊕

p+q=n V
p,q for the Hodge decomposition of V ,

where V p,q is the space of vectors on which the action of z is given by z−pz−q.
By definition, AC contains the image of h ◦ µ, that is, it contains all the
operators of the form

hC ◦ µ(z) =
⊕
p+q=n

z−p idV p,q ,

since by definition of µ we have z ◦ µ = id (resp. z̄ ◦ µ = 1).
Writing down the action of τ we find that AC contains the elements

τ ·

( ⊕
p+q=n

z−p idV p,q

)
= τ ◦

( ⊕
p+q=n

z−p idV p,q

)
◦ τ,

and since τ exchanges V p,q and V q,p this is just⊕
p+q=n

z−q idV p,q .

Finally, as AC is closed under composition, it also contains⊕
p+q=n

z−p1 z2
−q idV p,q

for every choice of z1, z2 ∈ C∗×C∗. It follows immediately from the identifica-
tions given in Remark 1.1.7 that this is precisely hC (S), so hC factors through
AC, h factors through AR and therefore A(V ) ⊃MT (V ).
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Definition 3.1.3. The unit circle group U1 ⊂ S is the kernel of the norm
character. Its real points correspond to the unit circle S1.

We can now finally introduce what is probably the most important notion
in the theory:

Definition 3.1.4. The Hodge group Hg(V ) is the smallest algebraic sub-
group of GL(V ) defined over Q such that h|U1 factors through Hg(V )R.

Proposition 3.1.5. For any Hodge structure V , both MT (V ) and Hg(V ) are
connected.

Proof. S is connected, so the morphism h : S → GL(VR) defining the Hodge
structure V factors through a group G if and only if it factors through G0. By
minimality MT (V ) must then equal MT (V )0, so it is connected. Same proof
for the Hodge group.

Proposition 3.1.6. For m = 0 the Hodge and Mumford-Tate groups coincide,
while for m 6= 0 MT (V ) is the almost-direct product of Gm,Q and Hg(V ).

Proof. It is apparent from the definitions that the Hodge group of V is a
subgroup of MT (V ). Let m = 0 and write z = |z|eiθ for the polar form of
complex numbers. Noticing that h|R∗ is trivial, we find that h factors through
a subgroup G of GL(V ) if and only if h|U1 does, since h(z) = h (z/|z|) and
z/|z| is on S1. The definitions of MT (V ) and Hg(V ) then immediately imply
the desired equality.

Suppose from now on that m 6= 0. As a first step, we compute the de-
terminant of h(z) ∈ GL(VR) for any z ∈ C∗ = S(R). Since det(h(z)) is
invariant under extension of scalars, we may as well compute the determinant
of h(z)C ∈ GLC(V ). In view of the convention set up in Remark 1.1.8 we
know that h(z)C acts as multiplication by z−pz̄−q on V p,q, so

det(h(z)) = det(h(z)C) =
∏

p+q=m

det
(
z−pz̄−q IdV p,q

)
=

∏
p+q=m

(
z−pz̄−q

)dim(V p,q)
.

Exploiting the symmetry V p,q = V q,p we can rewrite the above expression
as

det (h(z)) =
∏

p+q=m

(
z−pz̄−q

) 1
2

dim(V p,q) (
z−q z̄−p

) 1
2

dim(V q,p)

=
∏

p+q=m

Nm(z)(−p−q)· 1
2

dim(V p,q)

= Nm(z)−
1
2
m·dim(

⊕
p+q=m V p,q)

= Nm(z)−
1
2
m dim(V ).
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In particular, as U1 is the kernel of Nm, we see that Hg(V ) ⊂ SL(V ). As
h ◦ w(a) = a−m IdV and m is nonzero, the image of h contains all of the real
homotheties, therefore MT (V ) ⊃ Gm,Q. We can then compute the product of
Gm,Q and Hg(V ) inside MT (V ).

The intersection of these two subgroups is clearly finite, since (even over the
algebraic closure C) there is only a finite number of points in SL(C)∩Gm,C(C),
correseponding to the roots of unity of order dividing dim(V ). Moreover,
both subgroups are normal, since Gm,Q is contained in the center and Hg
can be identified with the kernel of the determinant morphism (restricted
to MT ). On the other hand, these two subgroups generate MT (V ): as we
have already remarked, writing a complex number z as |z|u with u ∈ U1(R)
gives h(z) = h(|z|)h(u) as the product of a real homothety and an element of
Hg(V )R, so we finally get MT (V ) = Gm,Q ·Hg(V ).

Proposition 3.1.7. Let V be a Hodge structure and ν = {(ai, bi)}i=1,··· ,n be
a collection of pairs of non-negative integers. The vector space

V ν =

n∑
i=1

V ⊗ai ⊗
(
V ∨
)⊗bi

inherits a Hodge structure from V , and the tautological representation of
MT (V ) induces an action of MT (V ) on V ν .

Let W be a vector subspace of V ν . Then W is a sub-Hodge structure if and
only if W is invariant under the action of MT (V ), and an element t ∈ V ν is
a Hodge class if and only if it is invariant under the action of MT (V ).

Proof. Let H < GL (V ν) be the stabilizer of the subspace W in V ν , i.e. the
algebraic subgroup given on Q-algebras A by

H(A) = {x ∈ GL (V ν ⊗A) |x(W ⊗A) ⊆W ⊗A} .

Note that the action of x on W is the one given by representing GL(V ) in
GL(V ν). As W is a rational subspace, H is clearly defined over Q; consider
now the morphism h : S→ GL(VR). By definition, W is a sub-Hodge structure
if and only if it a subrepresentation for the action of S, if and only if h factors
through HR, and this happens exactly if H contains the Mumford-Tate group
of V , namely if and only if MT (V ) stabilizes W .

For the second assertion, given any ν we can take ν ′ = ((0, 0), ν) to get
V ν′ ∼= Q(0) ⊕ V ν , and t is a Hodge class in V ν if and only if the subspace
Q · (1, t) ⊆ Q(0)⊕ V ν is a sub-Hodge structure. The result then follows from
the first part.

The following result, often quoted as Riemann’s Theorem (see, for example,
Corollary 6.9 in [Mil05]), is the reason why Hodge structures are so useful in
studying Abelian varieties. We state it here in provisional form, and postpone
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the full result until after the definition of a polarizable Hodge structure (see
Theorem 3.2.6 below).

Theorem 3.1.8. The functor A 7→ H1(A,Q) induces a full embedding of
the category of Abelian varieties over C, up to isogeny, into the category of
Q-Hodge structures of type (−1, 0), (0,−1).

If A is an Abelian variety, with a little abuse of notation we will speak
of the Mumford-Tate (resp. Hodge) group of A, meaning the corresponding
group of the Hodge structure H1 (A,Q).

Proposition 3.1.9. Let A be a simple Abelian variety, D its endomorphism
algebra, V = H1(A,Q), M its Mumford-Tate group. Then

D ∼= (End(V ))M = (End(V ))Hg(A)

Proof. The last equality follows immediately, since we already know (Proposi-
tion 3.1.6) that in this case MT (A) = Hg(A) ·Gm,Q, and clearly Gm,Q (acting
through multiples of the identity) commutes with every automorphism of V .

In view of the above theorem, the endomorphism algebra D of A is iso-
morphic to the endomorphism algebra of the Hodge structure V := H1(A,Q).
Let h : S → GL(VR) be the morphism describing the Hodge structure V . A
(Hodge) endomorphism ϕ of V is a h(S)-equivariant map, that is, a linear
transformation such that

ϕR(h(z)v) = h(z)ϕR(v) ∀v ∈ VR, ∀z ∈ S(R).

Replacing v by h(z)−1v we see that ϕ is a endomorphism of the Hodge
structure V if and only if

h(z) ◦ ϕ ◦ h(z)−1 = ϕ ∀z ∈ S(R).

But this is exactly the definition of the action of S on End(V ), so ϕ is an
endomorphism of V as a Hodge structure if and only if it is a Hodge class in
End(V ). Thanks to Proposition 3.1.7 we know that Hodge classes equal the
fixed points for the action of MT (V ), so we finally get the desired equality.

There is also a particularly useful characterization of CM varieties in terms
of their Mumford-Tate groups:

Proposition 3.1.10. Let A be a simple abelian variety over C with Mumford-
Tate group M . Then A has complex multiplication if and only if M is a torus.

Proof. Suppose first that A has complex multiplication. Let g be the dimen-
sion of A. Then by definition D := End0(A) is a field of degree 2g over Q,
and since V := H1(A,Q) is a D-module of dimension 2g over Q we find that
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V is a free D-module of rank 1. We can then identify V ∼= D (with its natural
action of D by left multiplication).

Let ϕ ∈ M . Since the actions of M and D on V = D commute by
Proposition 3.1.9, we get

ϕ(d) = ϕ(d · 1) = dϕ(1) ∀d ∈ D,

so ϕ can be identified to multiplication by ϕ(1) (D being commutative, there
is no need to distinguish left and right multiplication here). It follows that M
is a subgroup of ResD/Q (Gm), and being connected (Proposition 3.1.5) and
reductive it is a torus.

On the other hand, suppose M is a torus and let T be any maximal torus in
GL(V ) containing T . Then D = End(V )M ⊇ End(V )T , and since everything
commutes with extending scalars we find

D ⊗Q C ⊇ End(V ⊗Q C)TC .

Since all maximal tori are conjugated over C, we can simply take TC to be
the diagonal torus, in which case End(V ⊗Q C)TC equals the set of diagonal
matrices, which has dimension 2g over C. Taking dimension then yields

dimQ (D) = dimC (D ⊗Q C) ≥ dimC
(
End(V ⊗Q C)TC

)
= 2g,

which by definition means that A has complex multiplication.

3.2 Polarizable Hodge structures

An extremely important subclass of Hodge structure is given by the so-called
polarizable ones. As the name suggests, this notion comes from geometry,
but in order to introduce the Hodge counterparts of polarizations we first need
to define the Tate structures Q(n).

Definition 3.2.1. For every integer n ∈ Z, the Tate structure Q(n) is
the vector space V := Q · (2πi)n ⊂ C, with Hodge structure purely of type
(−n,−n): in other words,

VC ∼= C

is declared to be V −n,−n. The n-th Tate twist of a Hodge structure W is
W (n) := W ⊗Q Q(n).

Remark 3.2.2. An element z ∈ S(R) acts on VC via the multiplication by
znz̄n = Nm(z)n, which is to say that the homomorphism h : S(R)→ GL(VR)
is simply Nmn. It is then clear from the definitions that the Tate structure
Q(n) is of pure weight −2n.
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Definition 3.2.3. Let V be a Hodge structure of weight n with Weil operator
C. A polarization of V is a morphism of Hodge structures

ϕ : V ⊗ V → Q(−n)

such that the bilinear form (on the real vector space VR)

VR × VR → R
(x, y) 7→ (2πi)nϕ(Cx⊗ y)

is symmetric and positive definite.
A pair (V, ϕ), where V is a Hodge structure and ϕ is a polarization of V ,

is called a polarized Hodge structure. A Hodge structure admitting at
least one polarization is called polarizable.

Proposition 3.2.4. Let ϕ be a polarization of a structure V of weight n.
Then ϕ is symmetric (resp. skew-symmetric) if n is even (resp. odd).

Proof. A morphism of Hodge structures commutes with the Weil operator by
Remark 1.1.11; moreover, the Weil operator of Q(n) is trivial, since i ∈ S(R)
acts as multiplication by Nm(i)n = 1. Furthermore, note that if C is the Weil
operator of V , then C ⊗ C is the Weil operator of V ⊗ V .

It follows that

ϕ(Cx⊗ y) = ϕ(Cy ⊗ x) (symmetry)

= Cϕ(Cy ⊗ x) (triviality of C on Q(n))

= ϕ(C2y ⊗ Cx) (ϕ commutes with C)

= ϕ((−1)ny ⊗ Cx) (C2
V = (−1)n)

= (−1)nϕ(y ⊗ Cx) (linearity of ϕ),

so (as C is an automorphism) ϕ(x⊗ y) = (−1)nϕ(y ⊗ c), as claimed.

Remark 3.2.5. As it is well-known, there is also a notion of polarizations for
Abelian varieties. This is no coincidence, although the relation between the
two objects is not completely apparent.

For the sake of simplicity let’s work over C, so that we can write an Abelian
variety X as W/Λ, where W is a g-dimensional vector space over C and Λ is
a (full-rank) lattice in W . An equivalent notion of polarization on X is then
that a non-degenerate, positive-definite Hermitian form

H : W ×W → C

such that Im(H)(Λ,Λ) ⊆ Z.
We now want to explore the relation between this notion, our previous

definition and polarizations at the level of Hodge structures.
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There is a bijection between such forms H and alternating R-linear forms
E : W ×W → R such that E(iu, iv) = E(u, v) for all u, v ∈ W , the corres-
pondence being given by H(u, v) = E(u, iv) + iE(u, v). Moreover, H satisfies
the above properties if and only if E satisfies

1. E is non-degenerate

2. the symmetric form (u, v) 7→ E(u, iv) is positive definite

3. E is integer-valued on Λ× Λ.

The long exact cohomology sequence associated to the exponential exact
sequence

0→ Z→ OX → O∗X → 0

gives rise to a map (the first Chern class)

c1 : H1 (X,O∗X)→ H2 (X,Z) ∼= Hom

(
2∧

Λ,Z

)
,

whose image consists of alternating forms E ‘of type (1, 1)’, i.e. such that
ER(iu, iv) = ER(u, v). Such E’s clearly satisfy (3) above; it is then natural to
ask what conditions we ought to impose on a line bundle L in order for c1(L)
to be positive-definite.

Consider the dual torus X̂ of X. It can be described as Ŵ/Λ̂, where Ŵ is
the C-vector space of C-antilinear forms W → C and Λ̂ is the dual lattice

Λ̂ =
{
h ∈ Ŵ |h (Λ) ⊂ Z

}
Let L be a holomorphic line bundle on X and let H be the Hermitian form

on W corresponding to c1(L). Associated to L we have a morphism

ϕL : X → X̂

v → H(v,−),

and it turns out that the form H is non-degenerate if and only if ϕL is an
isogeny. Moreover, H is positive definite if and only if L is ample, i.e. if and
only if ϕL is a polarization in the geometric sense. Since every polarization
has an associated ample line bundle, we see that the data of a polarization
is equivalent to the data of H, which is in turn equivalent to giving an E as
above, which is exactly a polarization in the sense of Hodge structures.

We can now state the full version of Riemann’s Theorem as follows:

Theorem 3.2.6. The functor A 7→ H1(A,Q) is an equivalence between the
category of Abelian varieties over C, up to isogeny, and the category of polar-
izable Q-Hodge structures of type (−1, 0), (0,−1).
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Remark 3.2.7. Let (V, ϕ) be a polarized Hodge structure and W be a sub-
Hodge structure of V . Then W is again polarizable (we can take as polar-
ization the restriction of ϕ), and the orthogonal complement W⊥ of W with
respect to the bilinear form induced by ϕ is again a sub-Hodge structure. In-
deed, W⊥ is a sub-Hodge structure if and only if it is stable under the action
of Hg(V ), but this is rather clear: the identity

ϕ
(
w ⊗ hw⊥

)
= ϕ

(
h−1w ⊗ w⊥

)
= 0 ∀w ∈W, ∀w⊥ ∈W⊥, ∀h ∈ Hg(V )

implies h
(
W⊥

)
⊆W⊥ ∀h ∈ Hg(V ), as we wanted to show.

Moreover, since WR is stable under the action of C we have

W⊥ ⊗ R ∼= {x ∈ VR|ϕR(x,w) = 0 ∀w ∈WR}
= {x ∈ VR|ϕR(x,Cw) = 0 ∀w ∈WR} ;

as (2πi)−1ϕR (·, C·) is positive defined, this implies that WR and W⊥R intersect
trivially. Their sum is therefore direct, whence an isomorphism of Q-Hodge
structures V ∼= W ⊕W⊥.

Finally, the category of polarizable Hodge structures is clearly closed under
direct sum and tensor products.

Using polarizations it is not difficult to prove the following simple but very
useful results:

Proposition 3.2.8. Let A be any Abelian variety and H be its Hodge (resp.
Mumford-Tate) group. Then H is reductive.

Proof. In view of Theorem 1.1.17 we only need to show that H admits a
faithful semisimple representation. Note that H1(A,Q) is polarizable, and
Remark 3.2.7 implies that the tautological representation

Hg(A) ↪→ GL(H1(A,Q)),

which is certainly faithful, is in fact also semisimple: the sub-H-modules
are precisely the sub-Hodge structures, and since every sub-Hodge structure
admits an (orthogonal) complement the representation is completely redu-
cible.

Lemma 3.2.9. Let V be a simple Hodge structure of weight −1 associated to
an Abelian variety A, ϕ : V ⊗ V → Q(1) a polarization of V coming from a
polarization ψ of A. Let D be the endomorphism algebra of A, † the Rosati
involution associated to ψ, F the center of D and ZH = Z(Hg(A))0. Let
furthermore TF be the torus ResF/Q(Gm) and UF be the kernel of Nm : TF →
Gm, i.e. the subtorus defined by xx = 1.

Then ZH ⊆ U0
F and Hg(A) ⊆ Sp(V, ϕ).
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Proof. We know from Proposition 3.1.9 that

(∗) D = (EndQ(V ))Hg(V ) ,

so Hg(V ) commutes with D. At the level of Q-points, ZH < Hg(V ) is then
a subset of EndQ(V ) that commutes with Hg(V ), so ZH ⊆ D, and moreover
ZH ⊆ D∗, since ZH < Hg(V ) < GL(V ) contains only invertible elements.
Again from (∗) we find that D commutes with Hg(V ), so in particular it
commutes with ZH < Hg(V ), hence ZH is contained in the center of D. It
follows that ZH ⊆ F and ZH ⊆ ResF/Q(Gm) as algebraic groups (by the
density of Q-points).

We can now exploit the fact that ϕ is a morphism of Hodge structures,
which means

ϕ(hv ⊗ hw) = hϕ(v ⊗ w) = ϕ(v ⊗ w) ∀v, w ∈ V, ∀h ∈ Hg(V ),

since Hg(V ) acts through Nm ≡ 1 on Q(1).

It follows that Hg preserves the skew-symmetric form associated to ϕ, so
Hg(V ) ⊆ Sp(V, ϕ). The Rosati involution is the adjunction with respect to
ϕ, so

ϕ(dv ⊗ w) = ϕ(v ⊗ d†w) ∀v, w ∈ V, ∀d ∈ D;

as Hg(V ) < D∗, the above formula holds in particular for d ∈ Hg(V ), whence

ϕ(v ⊗ w) = ϕ(hv ⊗ hw) = ϕ(v ⊗ h†hw) ∀v, w ∈ V, ∀h ∈ Hg(V ),

and since the bilinear form associated to ϕ is non-degenerate we find h†h = 1.
But on Hg(V ) ⊂ F the Rosati involution coincides with complex conjugation,
so h̄h = 1 for every h in Hg(V ) and we finally find the inclusion H ⊆ U0

F .

Corollary 3.2.10. Let A be an Abelian variety without simple factors of type
IV. Then Hg(A) is semisimple.

Proof. We already know (Proposition 3.2.8) that Hg(A) is reductive, whence
a decomposition of Hg(A) ∼= Hg(A)′ · Z(Hg(A)) with Hg(A)′ semisimple. It
is then enough to show that Z(Hg(A)) is finite, and it is enough to do so for
a simple variety. In this case, Z(Hg(A)) is a subgroup of U0

F by the above
Lemma, so it suffices to show that U0

F is finite. Let Σ be the set of embeddings
F ↪→ C. Then

X∗ (TF ) =
⊕
γ∈Σ

Zγ

with its natural action of Gal
(
Q/Q

)
, while X∗ (UF ) is the quotient of X∗ (TF )

by those homomorhpisms that are trivial on the elements of norm 1, i.e. those
of the form σ + σ, σ ∈ Σ.
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By the Albert classification, though, F is a totally real field (since no factor
is of type IV), so σ = σ and the character group of U0

F is trivial, since the

character group of UF is finite, being the quotient of
⊕
γ∈Σ

Zγ by
⊕
σ∈Σ

Z(2σ).

3.3 Product decomposition

We record for later use a general and very useful result on Lie algebras, es-
sentially due to Ribet ([Rib76]):

Lemma 3.3.1. Let C be an algebraically closed field of characteristic zero and
V1, . . . , Vn be finite-dimensional C-vector spaces. Let gl(Vi) be the Lie algebra
of endomorphisms of Vi and let g be a Lie subalgebra of gl(V1)× · · · × gl(Vn).
For each i = 1, · · · , n let πi :

∏n
j=1 gl(Vj) → gl(Vi) be the i-th canonical

projection and let gi = πi(g).

Suppose that each gi is a simple (nonzero, but possibly Abelian of dimension
one) Lie algebra and that one of the following conditions holds:

(a) For every pair of indices i, j the projection πi× πj : g→ gi× gj is onto.

(b) For every simple Lie algebra l let

I(l) = {i ∈ {1, · · · , n} |l ∼= gi} .

For every l such that |I(l)| > 1 the following conditions are met:

1. every automorphism of l is inner;

2. choose isomorphisms ϕk : l → gk (for k ∈ I(l)). Then the rep-
resentations of l induced by the composition of ϕk with the tauto-
logical representations of gk on Vk, for k varying in I(l), are all
isomorphic;

3. the equality

Endg

⊕
i∈I(l)

Vi

 ∼= ∏
i∈I(l)

Endgi Vi.

holds.

Then g =
n∏
j=1

gj.
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Proof. Let us prove the Lemma under the assumptions of (a). We proceed by
induction on n, the case n = 1 being trivial.

For n = 2 the result follows from simple linear algebra: g ⊂ g1 × g2 forces
dim(g) ≤ dim(g1) + dim(g2), and on the other hand we have a surjective map
g � g1 × g2, so dim (g) ≥ dim (g1) + dim (g2), and equality (of dimension,
hence equality as vector spaces) must hold.

Let now n ≥ 3 and Ĩ = ker (πn : g � gn). Write Ĩ = I ⊕ 0 for a certain
subspace I of g1 ⊕ · · · ⊕ gn−1.

I is then an ideal of g1⊕ · · · ⊕ gn−1: to see this, let N be its normalizer in
g1⊕· · ·⊕gn−1. We want to show that N fulfills the hypotheses of the Lemma
in the case n−1, so N equals g1⊕· · ·⊕gn−1 and I is an ideal of g1⊕· · ·⊕gn−1.

• The projections πi : N → gi, i = 1, · · · , n − 1 are surjective: indeed, N
contains I, and since the combined projection πi × πn : g → gi ⊕ gn is
surjective, for each gi ∈ gi we can choose an inverse image a of (gi, 0)
through this double projection. Then clearly a ∈ I ⊆ N satisfies πi(a) =
gi. Note in particular that for every i = 1, · · · , n − 1 the projection
πi : I → gi is surjective.

• Let (gi, gj) ∈ gi⊕gj . We want to show that there exists a certain g ∈ N
that projects to (gi, gj).

By hypothesis there is a certain a ∈ g such that (πi × πj) (a) = (gi, gj).
Write a = (g1, . . . , gn−1, gn). For any i = (i1, . . . , in−1) ∈ I we have that
ĩ = (i1, . . . , in−1, 0) belongs to Ĩ, which clearly is an ideal of g. It follows
that Ĩ contains[
a, ĩ
]

= ([g1, i1], . . . , [gn−1, in−1], [gn, 0]) = ([g1, i1], . . . , [gn−1, in−1], 0) ,

so I contains ([g1, i1], . . . , [gn−1, in−1]). Since this holds for every i ∈ I
we see that (g1, . . . , gn−1) belongs to N , whence πi×πj : N → gi⊕ gj is
surjective.

The Lie algebra g1 ⊕ · · · ⊕ gn−1 is clearly semisimple (as it is a direct sum
of simple pieces), so its ideal I is in fact a semisimple algebra itself, and more
precisely it is of the form ⊕

i∈J
gi

for a certain J ⊆ {1, . . . , n− 1}. But since every projection πi : I → gi is sur-
jective (as we have already proved) we clearly need to have J = {1, . . . , n− 1},
whence

dim(g) = dim(I) + dim (gn) =

n∑
i=1

dim (gi) ,

which in turn forces g ∼=
⊕n

i=1 gi.
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To prove the lemma with the hypotheses of (b) it suffices to show that (b)
implies (a). Let us fix a pair (i, j) and consider the projection πi × πj : g →
gi×gj . Let h be the image of this map: it is a semisimple subalgebra of gi×gj
that projects surjectively on both factors.

As the kernel of the projection h → gi is either trivial or equals (0) × gj
(being isomorphic to an ideal of gj), we see that h is either gi×gj or the graph
of an isomorphism ϕ : gi → gj . It follows that if gi and gj are not isomorphic,
then g→ gi × gj is automatically surjective.

Suppose, on the contrary, that gi and gj are isomorphic. We are go-
ing to show that h still cannot be the graph of an isomorphism gi → gj ,
since this would contradict the third hypothesis in (b). Suppose by contra-
diction that this is the case. We want to construct a non-zero morphism of
g-representations

χ̃ij : Vi → Vj .

Let l be an abstract simple Lie algebra to which gi, gj are both isomorphic.
The hypotheses imply the existence of the following applications:

• the Lie algebra isomorphism ϕ : gi → gj whose graph is given by h;

• Lie algebra isomorphisms ϕi : l→ gi, ϕj : l→ gj ;

• an isomorphism of l-representations χij : Vi → Vj , i.e. an isomorphism
of vector spaces such that

χij (ϕi(l) · vi) = ϕj(l) · χij (vi) ∀vi ∈ Vi, ∀l ∈ l (∗).

Our assumptions also imply that every g = (g1, . . . , gn) ∈ g satisfies gj =
ϕ(gi), so the χ̃ij we are looking for is a morphism of g-representations if and
only if

χ̃ij (gi · vi) = ϕ(gi) · χ̃ij (vi) ∀vi ∈ Vi, ∀gi ∈ gi.

Choosing l = ϕ−1
j ◦ ϕ(gi) in (∗) gives

χij

((
ϕi ◦ ϕ−1

j ◦ ϕ
)

(gi) · vi
)

= ϕ(gi) · χij (vi) .

By hypothesis we know that the automorphism ϕi◦ϕ−1
j ◦ϕ of gi is inner, so

there exists a certain a ∈ GL(Vi) such that ϕi◦ϕ−1
j ◦ϕ(x) = axa−1. Replacing

this expression in the above we get

χij
(
agia

−1 · vi
)

= ϕ(gi) · χij (vi) ,

hence (choosing vi = av)

(χij ◦ a) (gi · v) = ϕ(gi) · (χij ◦ a) (v) ∀v ∈ Vi, ∀gi ∈ gi,
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so we can take χij ◦a as our χ̃ij . Now the existence of this χ̃ij contradicts the
third hypothesis of point (b), since out of it we can fabricate

Ψ :
⊕
k∈I(l)

Vk →
⊕
k∈I(l)

Vk

(vi1 , · · · , vi︸︷︷︸
factor Vi

, · · · , vi|I(l)|) 7→ (0, · · · , χ̃ij(vi)︸ ︷︷ ︸
factor Vj

, · · · , 0)

which by construction belongs to Endg

(⊕
k∈I(l) Vk

)
, but does not send every

factor to itself, so it does not belong to
∏
k∈I(l) Endgk (Vk). This contradiction

shows that g → gi × gj is onto, hence (a) applies and yields the desired
conclusion.

Lemma 3.3.2. Let A be an Abelian variety isogenous to a product X1 · · ·Xn.
Then Hg(A) ⊂ Hg(X1) × · · · ×Hg(Xn), and its projection on each factor is
surjective. Same statement for the Mumford-Tate group.

Proof. The statements for the Mumford-Tate group and the Hodge group
are clearly equivalent, since we already know from Proposition 3.1.6 that
MT (Xi) = Gm ·Hg(Xi).

For Mumford-Tate groups everything follows immediately from the defin-
itions: indeed, let Vi = H1(Xi,Q), V = H1(A,Q) and

ρi : S→ GL (Vi,R) , ρ : S→ GL (VR)

be the morphisms defining the Hodge structures on Vi and V respectively.
Then ρ =

⊕n
i=1 ρi, and each ρi factors through its corresponding MT (Xi)R,

so ρ factors through MT (X1)R × · · · ×MT (Xn)R. By minimality of MT (A)
we then have MT (A) ⊆MT (X1)× · · · ×MT (Xn).

Conversely, let Mi be the image of the projection πi : MT (A) → GL(Vi).
As
⊕n

i=1 ρi factors through MT (A)R and πi is defined over Q, (Mi)R factors

πi

(
n⊕
k=1

ρk

)
= ρi,

which in turn implies (by minimality of MT (Xi)) Mi ⊇MT (Xi), as claimed.

As an immediate consequence we get a generalization of Proposition 3.1.10,
where we drop the assumption that A is simple:

Corollary 3.3.3. Let A be any Abelian variety over C with Mumford-Tate
group M . Then A has complex multiplication if and only if M is a torus.
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Proof. Let A ∼= A1 · . . . ·An be the decomposition of A as product of (possibly
repeated) simple factors: then A is of CM type if and only if each factor is.

If Hg(A) is a torus, Hg(Ai) - being a connected quotient of a Hg(A) - is
itself a torus, so Ai is of CM type because of Prop. 3.1.10.

If, conversely, every factor Ai admits complex multiplication, then each
Hg(Ai) is a torus, so Hg(A) is a subgroup of Hg(A1) × · · · × Hg(An). It
follows that it is commutative, connected and reductive, hence a torus.

Combining Ribet’s lemma with the description of the Hodge group of a
product we also get the following

Corollary 3.3.4. Let A1, A2 be two Abelian varieties. Suppose that the Lie
algebras of Hg(A1) and Hg(A2) are semisimple, and all the simple factors
appearing in their decomposition as products of simple algebras are pairwise
non-isomorphic. Then Hg(A1 ×A2) ∼= Hg(A1)×Hg(A2).

Proof. LetH,H1, H2 be the Hodge groups of A := A1×A2, A1, A2 respectively,
and let h, h1, h2 be the corresponding Lie algebras.

By Lemma 3.3.2 we know that H ⊆ H1 × H2 and that the projections
πi : H → Hi of H on each factor are surjective. It follows that for each simple
factor l of h1, h2 the induced maps πl : h → hi → l are surjective, too, and
since the simple factors are pairwise not isomorphic part (b) of Lemma 3.3.1
applies to give h ∼= h1 × h2, whence (by connectedness) H = H1 ×H2.

At the opposite end of the spectrum, we see that the exponent of a simple
factor ’does not show up’ in the Hodge group:

Lemma 3.3.5. Suppose the Abelian variety A is isogenous to Bn, where B is
simple. Then we can identify H1(A,Q) ∼= H1(B,Q)⊕n, and we have Hg(A) ∼=
Hg(B), where the second group acts diagonally on H1(B,Q)⊕n.

More generally, let A ∼= An1
1 × · · · × Ankk be the decomposition of A as

product of powers of pairwise non-isomorphic simple varieties. Then Hg(A) ∼=
Hg (A1 × · · · ×Ak).

Proof. Let W = H1(B,Q) and V = H1(A,Q) ∼= W⊕n; let furthermore ρ : S→
GL (VR), ρ1 : S→ GL (WR) be the morphisms defining the Hodge structures.
Clearly σ = ρ⊕ · · · ⊕ ρ︸ ︷︷ ︸

n times

, so Hg(A) is contained in the diagonal of Hg(B)n,

since ρ factors through the R-points of this last group.
On the other hand, Lemma 3.3.2 implies that Hg (Bn) ⊂ Hg(B)n projects

surjectively on each factor Hg(B), so Hg (Bn) equals the diagonal of Hg(B)n,
as claimed.

In the general case, let Vi = H1(Ai,Q) and H be the image of Hg(A1 ×
· · · ×Ak) ⊆ Hg(A1)× · · · ×Hg(Ak) in GL(V ⊕n1

1 ⊕ · · · ⊕ V nk
k ), the immersion

being given by the diagonal action on each factor.
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The same argument as above shows that H contains the Hodge group of
A, since the defining morphism of H1(A,Q) factors through the real points of
H.

On the other hand, for i = 1, · · · , k let Bi be a distinguished copy of the
simple factor Ai; then the projection of Hg(A) ⊆ diag (Hg(A1)n1) × · · · ×
diag (Hg(Ak)

nk)→ Hg(B1)× · · · ×Hg(Bk) factors the defining morphism of
V1⊕ · · · ⊕ Vk, so it contains the Hodge group of Hg(B1× · · · ×Bk). It follows
that the Hodge group of A cannot be smaller than H and we have the desired
equality.

3.4 On bilinear forms and Hodge groups

It turns out to be way more convenient to work with bilinear forms instead of
using divisors directly.

We start by establishing a few general properties of bilinear forms before
turning to the connection they bear to our study of Abelian varieties.

The general picture we will be interested in is as follows: let F2/F1 be
a separable field extension. Suppose we are given a finite-dimensional vector
space V over F2. Then V inherits a structure of F1-vector space, and we would
like to investigate the relations between F1- and F2-linear forms on V . The
following constructions are essentially taken from [Del79].

A first general result is the following:

Proposition 3.4.1. For every F2-vector space V of finite dimension we have
a natural identification

HomF2 (V, F2) −→ HomF1 (V, F1)

χ 7→ trF2/F1
◦χ

Proof. As F2/F1 is separable, the pairing

(x, y) 7→ trF2/F1
(xy)

is nondegenerate, so the above map is injective, and it is surjective because
the two spaces have the same dimension over F1.

With this at hand we can easily determine which F1-bilinear forms are
actually induced by taking traces from F2 to F1:

Proposition 3.4.2. Let V,W be vector spaces over F2 and ϕ : V ×W → F1

an F1-bilinear form. Then there exists a F2-bilinear form ψ : V ×W → F2

such that ϕ = trF2/F1
ψ if and only if

ϕ(f2v, w) = ϕ(v, f2w) ∀f2 ∈ F2, v, w ∈ V.
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When ψ exists, it is unique. Finally, if W = V and ϕ is symmetric (resp.
skew-symmetric), so is ψ.

Proof. The condition is clearly necessary.

To see that it is also sufficient, note that it implies that we can think of ϕ
as an F1-linear form

ϕ : V ⊗F2 W → F1,

so - by the above Proposition - there is a unique F2-bilinear ψ : V ⊗F2W → F2

such that ϕ = trF2/F1
◦ψ.

For the final statement, simply notice that if S denotes the symmetrization
(resp. anti-symmetrization) operator, then

ϕ = Sϕ = S
(
trF2/F1

ψ
)

= trF2/F1
(Sψ) ,

where S commutes with tr by linearity. The uniqueness property then implies
Sψ = ψ, so ψ is a fixed point for S whenever ϕ is.

In order to show the relevance of the above for our study of Abelian vari-
eties we now introduce a rather natural description of divisor classes in terms
of alternating bilinear forms. Let A = V/Λ be a complex Abelian variety.
Given a divisor D ∈ Pic (A), we can take its Chern class, getting an element

of H2(A,Z), which we then identify to Hom

(
2∧

Λ,Z

)
. Finally, extending

scalars to R yields a bilinear, alternating form δ : VR × VR → R associated to
D. The following is a characterization of the bilinear forms that arise in this
way:

Proposition 3.4.3. Let A be an Abelian variety over C equipped with a po-
larization ϕ : A → A∨. Let e 7→ e† be the Rosati involution associated with
the given polarization and NS(A) be the Néron-Severi group of A.

Then the map

χ : NS(A)⊗Z Q → Hom0 (A,A∨) → End0(A)

[M] 7→ ϕM 7→ ϕ−1
L ◦ ϕM

identifies NS(A)⊗Z Q with the space{
e ∈ End0(A)|e = e†

}
of †-symmetric endomorphisms of A.
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Proof. Write A = V/Λ, A∨ = V
∗
/Λ∨ and let

ΦL : V → V
∗

be the analytic representation of ϕL. We have an Hermitian form H : V ×V →
C, given by

H (v1, v2) = (ΦL(v1)) (v2).

Recall that the Rosati involution is explicitly given by

ψ 7→ ϕ−1
L ◦ ψ

∨ ◦ ϕL,

and that it gives the adjoint map for H: identifying an element e ∈ End0(A)
with its analytic representation we have

H
(
e†v1, v2

)
=
(
ϕL ◦ ϕ−1

L ◦ e
∨ ◦ ϕL(v1)

)
(v2) =

(
e∨ ◦ ϕL(v1)

)
(v2)

= (ϕL(v1)) (ev2) = H(v1, ev2).

Now a rational endomorphism e is †-symmetric if and only if

H(ev1, v2) = H(v1, e
†v2) = H(v1, ev2) = H(ev2, v1),

that is to say, exactly when the bilinear form

(v1, v2) 7→ H(ev1, v2)

is Hermitian. Explicitly, the above form is given by

(v1, v2) 7→ (ΦL ◦ e(v1)) (e2),

and it is a well-known result (see, for example, Theorem 2.5.5 of [BL04]) that
this form is Hermitian exactly when ΦL ◦ e is the analytic representation of
ϕM for a certain line bundle M. Putting everything together, we see that e
is †-symmetric if and only if e = Φ−1

L ◦ ΦM, i.e. exactly when it belongs to
the image of χ.

In view of our identification of Chern classes with bilinear forms, we can
restate the above Proposition simply as

Theorem 3.4.4. Let A be a polarized Abelian variety over C and let ϕ be
the non-degenerate, bilinear form associated with the polarization. Then the
cohomology class of a divisor can be identified with a bilinear form ϕ(e·, ·) for
a certain †-symmetric rational endomorphism e of A.
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Finally, we turn our attention to Hermitian forms; we work directly in the
setting of Abelian varieties (see [Del79], Lemmas 4.6 and 4.7).

Let A be a polarized Abelian variety over C (resp. a number field K),
V := H1 (A,Q), F a CM-field and ν : F ↪→ End0(A) an injective ring homo-
morphism. In particular, this means ν(1) = 1A. Suppose that the polarization
on A is chosen in such a way that the associated Rosati involution induces
’complex conjugation’ on F (i.e. the unique nontrivial automorphism α 7→ α′

of F over its totally real maximal subfield). This is always possible, as already
remarked. With the above notation we have

Proposition 3.4.5. Fix any nonzero α ∈ F with α′ = −α and denote by ϕ
the Q-bilinear form on V induced by the given polarization. Then there exists
a unique F -Hermitian form

ψ : V × V → F

such that ϕ(v, w) = trF/Q (αψ(v, w)).

Proof. We apply Proposition 3.4.2 with V = W = H1 (A,Q), F1 = Q and
F2 = F , where the action of F is the natural one on V and is through complex
conjugation on W . This gives a first form ψ1 such that ϕ = trF/Q (ψ1); let
ψ = α−1ψ1, so that we trivially have ϕ = trF/Q (αψ).

We only need check that ψ thus defined is in fact Hermitian. It follows from
the definitions that ψ1 (and hence ψ) is sesquilinear (note that the action of
F on the second factor is through complex conjugation), so it suffices to show
that ψ(v, w) = ψ(w, v)′. We have trF/Q (αψ(y, x)) = ϕ(y, x) = −ϕ(x, y) =
− trF/Q (αψ(x, y)), so

trF/Q (αψ(x, y)) = trF/Q (−αψ(y, x)) = trF/Q
(
α′ψ(y, x)

)
.

On the other hand, by F -linearity, on replacing x with fx for an f ∈ F ,
we have

trF/Q (αfψ(x, y)) = trF/Q (αψ(fx, y)) = trF/Q
(
α′ψ(y, fx)

)
= trF/Q

(
α′f ′ψ(y, x)

)
= trF/Q

(
(αf)′ψ(y, x)

)
;

finally, since trF/Q (β′) = trF/Q (β) ∀β ∈ F , we get

trF/Q (αfψ(x, y)) = trF/Q
(
(αfψ(x, y))′

)
,

hence - on comparing the different expressions for trF/Q (αfψ(x, y)) - we find

trF/Q
(
(αfψ(x, y))′

)
= trF/Q

(
(αf)′ψ(y, x)

)
.

As f ranges through F , (fα)′ does the same, so - as trE/Q is non-degenerate

- ψ(y, x) = (ψ(x, y))′, as we wanted to show.
Finally, the uniqueness part follows from the analogous statement in Pro-

position 3.4.2.
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Let’s now apply the above to the case at hand: let A be a simple Abelian
variety, V = H1 (A,Q) and ϕ be the bilinear form on V induced by a polar-
ization. Suppose we are given a number field E together with an inclusion of
rings i : E ↪→ End0(A) =: D.

We single out two particular and very important cases:

• E is totally real.

By Proposition 3.4.2 there exists a unique E-bilinear form

ψ : V × V → E

that induces ϕ. A key fact in all that follows is the following:

Proposition 3.4.6. The Hodge group H := Hg(A) preserves ψ.

Proof. Take any h ∈ H and consider the bilinear form

ψh(v, w) := ψ(hv, hw).

On one hand, trE/Q(ψh(v, w)) = ϕ(hv, hw) = ϕ(v, w), since the Hodge
group preserves the forms induced by polarizations.

On the other hand, the Hodge group commutes with E by Proposition
3.1.9, so

ψh(e1v, e2w) = ψ(he1v, he2w) = ψ(e1hv, e2hw)

= e1e2ψ(hv, hw) = e1e2ψh(v, w)

for every choice of e1, e2 ∈ E, hence ψh is E-bilinear. By uniqueness of
ψ this implies ψh = ψ, so the Hodge group preserves ψ, as we wanted
to show.

It is thus very natural to introduce the following

Definition 3.4.7. Suppose we have fixed a polarization on A once and
for all. It then makes sense to define Sp (V/E) to be the (Q-algebraic)
group of E-automorphisms of V that preserve ψ. We shall make frequent
use of sp (V/E), the Lie algebra of this group. Explicitly,

sp (V/E) = {e ∈ EndE(V )|ψ(ev, w) + ψ(v, ew) = 0 ∀v, w ∈ V } .

• E is a CM field. Let E0 be the maximal totally real subfield of E
and e 7→ e′ be the Rosati involution associated to ϕ. We can (and
will) always choose ϕ in such a way that the Rosati involution induces
complex conjugation on E. For any choice of a non-zero α ∈ E with
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α′ = −α, Proposition 3.4.5 yields the existence of a unique E-Hermitian
form ψ such that ϕ(v, w) = trE/Q (αψ(v, w)).

The same proof as in the case of totally real fields again shows that
the Hodge group preserves ψ, and so its Lie algebra is contained in
{e ∈ EndE(V )|ψ(ev, w) + ψ(v, ew) = 0 ∀v, w ∈ V }, that we shall denote
u (V/E).

Remark 3.4.8. In the case E is a real field, the same arguments as above also
prove that Sp(V/E) = ResE/Q(Sp(V, ψ)). Similarly, noticing that U(V, ψ)
is an algebraic group over E0 and not over E in the CM case (for the same
reason why the unitary group is just a real Lie group and not a complex one),
U(V/E) = ResE0/Q(U(V, ψ)).

Finally, a simple variant of the argument for Hermitian forms works even
when D is a quaternion algebra (the key property is that the pairing induced
by the trace form is nondegenerate), in which case it will be useful to know
that ϕ determines a ’skew-D-Hermitian’ form, i.e. a form ψ : V × V → D,
D-linear in the first argument, that induces ϕ through the trace, and such
that ϕ(w, v) = −ϕ(v, w)′.

All of the above can also be repeated in an `-adic setting. Let us consider
the case where E is a totally real field. Let A be an Abelian variety over a
number field K, T` := T`(A) be the Tate module of A, V` := T` ⊗ Q` and
suppose that E admits a (ring) embedding in End0(A). A polarization on A
also induces a bilinear form ϕ` : V` × V` → Q`, and V` is a free module of
rank 2 dim(A)

[E:Q] over E` := E ⊗Q Q`. In this case we obtain a unique E`-bilinear

form ψ` on V` such that ϕ` = trE`/Q` (ψ`) and a corresponding Lie algebra
spE` (V`, ψ`), regarded as a Lie algebra over Q`.

Finally, in case E is a CM field, for any choice of α ∈ E such that α′ = −α
we find a unique ψ` such that ϕ` = trE`/Q` (αψ`), and the relevant Lie algebra
is uE`(V`, ψ`) regarded over Q`.

Finally, we introduce here the definition of the Lefschetz group and prove
a basic property (taken from [Mur84], Lemma 2.1) we are going to need later:

Definition 3.4.9. Let A be a (not necessarily simple) polarized Abelian vari-
ety defined over C, V := H1(A,Q), ϕ the bilinear alternating form induced
on V by the polarization and D := End0(X) the endomorphism algebra.

The Lefschetz group L(A) is the connected component of the identity
of the centralizer of D inside AutD(V, ϕ), the group of D-automorphisms of
V preserving ϕ.

Remark 3.4.10. Note that since two polarizations differ by the action of an
endomorphism of A, the group L(A) does not depend on the choice of the
polarization. Moreover, it is clear from the definition and the above consider-
ations on bilinear forms that Hg(A) is always a subgroup of L(A).
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Finally, L(A) is, in many particular cases, contained in other groups we
have introduced: for example, if A is simple and of Type I, then L(A) is a
subgroup of Sp(V/D), and if A is simple and D contains a CM field E, then
L(A) is a subgroup of U(V/E)0.

Proposition 3.4.11. Let A ∼= Bn1
1 · . . . · B

nk
k be the decomposition of A as

product of powers of pairwise non-isomorphic simple Abelian varieties Bi.
Then L(A) ∼= L(B1)× · · · × L(Bk).

Proof. For i = 1, . . . , k let Ai := Bni
i and Vi be H1(Ai,Q). Choose polariza-

tions ψ1, . . . , ψk on V1, . . . , Vk and note that ψ := ψ1⊕· · ·⊕ψk is a polarization
of H1(A,Q). As

End(A)⊗Q ∼=
k∏
i=1

End0(Ai),

an automorphism of Amust preserve each Vi, so that preserving ψ is equivalent
to preserving ψi for each i, which shows L(A) ∼=

∏k
i=1 L(Ai). Now fix an index

i, consider W = H1(Bi) and fix a polarization ψ̃ on W . We have Vi = W⊕ni

and we can take ψi to be ψ̃ ⊕ · · · ⊕ ψ̃︸ ︷︷ ︸
ni times

. As End(Ai) = Matni
(
End0(Bi)

)
, an

operator commuting with the full endomorphism algebra must act in the same
way on each factor W , thus identifying the centralizer of End(Ai) in Sp(V, ψ)

to the centralizer of End(Bi) in Sp
(
W, ψ̃

)
.



CHAPTER 4
Two worked out examples

We start from the two simplest classes of Abelian varieties, elliptic curves and
Abelian surfaces, and work out which groups can be realized as MT (A) in
these cases.

This chapter basically consists of an elaboration of Examples 5.4 and 5.7
and Exercise 5.6 of [Mooa], filling in the missing details in the hope of giving
a complete and almost self-contained proof of the classification result in these
cases.

4.1 Mumford-Tate groups of Elliptic Curves

Let E be an elliptic curve over C, and represent it as a quotient E = C/Λ of
C by a full-rank lattice.

As we already know (Proposition 3.2.8) that Hg(E) is a reductive group,
we start by classifying the reductive subgroups of SL2:

Lemma 4.1.1. Let k be an algebraically closed field. The only connected
reductive subgroups of SL2,k are then the trivial group, SL2,k itself and the
maximal tori.

Proof. Let G be any such reductive subgroup. We can check what happens in
every possible dimension:

Dimension 0 A connected group of dimension zero is clearly trivial.

Dimension 1 Over an algebraically closed field, the only groups of dimension 1 are
Ga and Gm. G cannot be isomorphic to Ga, since the category of rep-
resentations of this last group is not semisimple: indeed, Ga admits the

67
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two-dimensional representation

Ga ↪→ SL2

b 7→

(
1 b

1

)
,

that is not completely reducible. This contradicts Theorem 1.1.17, so G
cannot be isomorphic to Ga. It follows that G is a torus, and moreover
it is maximal, since the rank of SL2 is one.

Dimension 2 Consider H, the radical of G. H is a torus by Theorem 1.1.16, hence
dim(H) ≤ rank(G) ≤ rank(SL2) = 1, so G/H has dimension 2 or 1. Let
j be the Lie algebra of G/H. On one hand, j is semisimple, since G/H
is semisimple by definition of H.

On the other hand, dim(j) ≤ 2, and it is easy to check that any Lie
algebra of dimension at most 2 is solvable. But the only Lie algebra that
is at the same time solvable and semisimple is the trivial one, whence
the contradiction dim(j) = 0. Therefore SL2 has no reductive subgroup
of dimension 2.

Dimension 3 The scheme SL2 is irreducible, so every proper subscheme has dimension
strictly less than three. It follows that G < SL2, dim(G) = dim(SL2)
implies G = SL2, so this is the only possibility for dim(G) = 3.

With the previous Lemma at hand we can now deal with the task of
determining the possible Mumford-Tate groups for elliptic curves. As it is
well-known (for example as a corollary of the Albert classification, but it is in
fact a much simpler result), the endomorphism algebra of E is either Q or an
imaginary quadratic field (in which case E admits complex multiplication).
The two cases actually correspond to different Mumford-Tate groups, and the
complete result is as follows:

Proposition 4.1.2. Let E be an elliptic curve over C. Then Hg(E) = L(E).
More concretely, there are exactly two possibilities:

• E does not admit complex multiplication, in which case Hg(E) = SL2,Q
and MT (E) = GL2,Q;

• E admits complex multiplication by an imaginary quadratic field F , in
which case

Hg(E) =
{
x ∈ ResF/QGm,F |xx = 1

}
and MT (E) is the almost-direct product Hg(E) · Gm inside GL2,Q, so
MT (E) = ResF/Q (Gm,F ).
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Proof. Thanks to Lemma 4.1.1, combined with the fact that Hg(E) is reduct-
ive, we know that the only possibilities for Hg(E) are the trivial group, a
rank-one torus or the full group SL2.

Suppose first that the endomorphism algebra of E is just Q.

Hg(E) is clearly non trivial, for otherwise Proposition 3.1.9 would yield

End0(E) = (End(V ))Hg(E) = End(V ) 6= Q, contradiction.

Hg(E) cannot be a torus, either, since otherwise Proposition 3.1.10 would
imply that E has complex multiplication, which is against the hypothesis. It
follows that Hg(E) = SL2, and MT (E) = Gm ·Hg(E) is the full group GL2.

Finally, the inclusions SL2 = Hg(E) ⊆ L(E) ⊆ SL2 prove that Hg(E) =
L(E).

Suppose, on the contrary, that E has complex multiplication by an ima-
ginary quadratic field F . We know from Proposition 3.1.10 that in this case
the Mumford-Tate group of E (equivalently, its Hodge group) is commutative.
Lemma 3.2.9 then yields

Hg(E) = Z(Hg(E)) ⊆ UF =
{
x ∈ ResF/QGm,F |xx = 1

}
,

which is a torus of dimension one. Indeed, let σ, σ be the embeddings of F
into C. Then the character group of TF := ResF/QGm,F is free Abelian of
rank two, on the generators σ, σ̄, and

X∗(UF ) =
X∗(TF )

{homomorphisms trivial on those x such that xx = 1}

∼=
Zσ ⊕ Zσ
Z (σ + σ)

,

so X∗(UF ) is free of rank 1 and dim(UF ) = 1. By rank considerations it
follows that Hg(E), being connected, is either trivial or the full torus UF .
The first case is impossible: if V denotes H1(E,Q), Proposition 3.1.9 yields

D = End(V )Hg(E) = End(V ),

which is absurd, since D is commutative and End(V ) is not. We conclude
that Hg(E) = UF , hence

MT (E) ∼= Hg(E) ·Gm
∼= UF ·Gm = TF ,

where the last equality holds because TF clearly contains UF and Gm, and
both Gm · UF and TF are tori of rank 2.

Finally, note that L(E) commutes with the action of UF , which is a max-
imal torus in SL2, so L(E) must coincide with UF , hence with Hg(E).
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4.2 Mumford-Tate groups of Abelian Surfaces

We now want to classify which groups can arise as MT (A) for A an Abelian
surface. Throughout this section let A be a complex Abelian variety of di-
mension 2, V = H1(A,Q), M the Mumford-Tate group of A, h : S → VR the
morphism defining the Hodge structure on V . Clearly, we can restrict our
attention to the Hodge group of V instead of the full Mumford-Tate group.

Hg(A) again depends on the endomorphism algebra of A, and we have
a few more different possibilities. The complete classification is as follows
(Example 2.7 in [Moob], but here we try to give a little more detail and cover
the reducible case):

Theorem 4.2.1. Let A be an Abelian surface over C and D its endomorphism
algebra. Then Hg(A) and L(A) coincide.

More concretely, there are two possibilities for non-simple surfaces:

• A is isogenous to the self-product of an elliptic curve E, in which case
Hg(A) ∼= Hg(E);

• A is isogenous to the product of two non-isogenous elliptic curves E1

and E2, in which case Hg(A) ∼= Hg(E1)×Hg(E2)

and four possibilities for simple surfaces:

• D = Q: then Hg(A) ∼= Sp4,Q;

• D = F , a real quadratic field: then Hg(A) ∼= ResF/Q (SL2,F );

• D is a totally indefinite quaternion algebra: then

Hg(A) ∼= (D∗,opp)der ,

where we regard D∗ as an algebraic group over Q (see Section 1.1.6);

• D is a CM field F of degree 4 over Q: then (with the notation of Lemma
3.2.9) Hg(A) ∼= UF .

The rest of this chapter is dedicated to proving the above Theorem.

4.2.1 The reducible case

Suppose first that A is not irreducible, so that A is isogenous to a product of
two elliptic curves E1, E2.

Lemma 4.2.2. Suppose E1, E2 have complex multiplication and let M1,M2

be their Mumford-Tate groups. Then M1
∼= M2 if and only if E1 is isogenous

to E2.
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Proof. The ’if’ part is trivial.

For i = 1, 2 write Ei = C/〈1, τi〉 where =τi > 0. The endomorphism
algebra Fi of Ei is then the quadratic imaginary field Q(τi). We know from
the discussion on elliptic curves that

Mi
∼= ResFi/Q(Gm,Fi),

so we can recover Fi from Mi as the group of its Q-valued points.

But then M1
∼= M2 implies F1 = F2 ⊂ C (both fields are Galois over Q, so

their image in C is well-defined), from which follows the existence of a, b ∈ Q
such that τ1 = aτ2+b. Clearing denominators we have cτ1 = dτ2+e for certain
integers c, d, e, which in turn means that the two lattices defining E1, E2 are
commensurable, i.e. E1 and E2 are isogenous.

It turns out to be more convenient to work with Hodge groups; to determ-
ine Hg(A) we further distinguish two subcases:

• E1 is isogenous to E2, so A is isogenous to E2 for a certain elliptic curve
E = C/Λ: Lemma 3.3.5 applies and yields Hg

(
E2
) ∼= Hg(E) with its

diagonal action.

• E1 and E2 are not isogenous. Then the Hodge groups of E1 and E2 can
only be isomorphic if neither has complex multiplication (if this were not
the case, then clearly both would have complex multiplication, hence by
the above Lemma 4.2.2 E1 and E2 would be isogenous, contradiction),
in which case Hg(E1) = Hg(E2) = SL2. We are then left with the
following three cases (up to symmetry): Hg(E1) ∼= Hg(E2) ∼= SL2;
Hg(E1) ∼= SL2 and Hg(E2) is a torus; Hg(E1) and Hg(E2) are both
tori.

In the first two cases, part (b) of Lemma 3.3.1 applies (using that sl2 only
has one irreducible representation of dimension 2, up to isomorphism)
and we have Hg(E1 × E2) = Hg(E1)×Hg(E2).

In the third case we want to show that we still have Hg(E1 × E2) ∼=
Hg(E1) × Hg(E2), and in order to do so we use the equivalence of
categories of Theorem 1.1.1. Write Mi

∼= ResFi/Q(Gm,Fi) and let σi, σi
be the embeddings of Fi in C. We know from the case of elliptic curves
that

X∗ (Hg(Ei)) ∼=
Zσi ⊕ Zσi
Z (σi + σi)

,

so Hg(E1)×Hg(E2) corresponds to the subgroup

A := Z (σ1 + σ1)⊕ Z (σ2 + σ2)



72 CHAPTER 4. TWO WORKED OUT EXAMPLES

of

B := X∗(M1 ×M2) ∼=
⊕
i=1,2

(Zσi ⊕ Zσi) .

We can now classify the subtori of Hg(E1) × Hg(E2) by studying the
subgroups of B containing A. Let C be the (free) subgroup correspond-
ing to Hg(E1 × E2).

If rk(C) = 4, then Hg(E1 × E2) is trivial, and this is absurd.

If rk(C) = 2 then C = A and Hg(E1 × E2) = Hg(E1) × Hg(E2), as
desired.

Finally, if rk(C) = 3, then C is generated by σ1 +σ1, σ2 +σ2 and a third
element ω, that we can write as aσ1 +bσ2. As F1, F2 are linearly disjoint
over Q (they are Galois extensions with trivial intersection), there is an
element χ ∈ Gal

(
Q/Q

)
such that χ · σ1 = σ1 and χ · σ2 = σ2, so

C 3 χ · ω + ω − a(σ1 + σ1) = 2bσ2.

Similarly, C contains 2aσ1, so exactly one between a and b is zero (for
otherwise we would have rk(C) = 4 or rk(C) = 2). We can suppose
without loss of generality that a 6= 0. On the other hand, the surjective
projection Hg(E1 × E2)→ Hg(E1) induces an injection

X∗(Hg(E1)) ↪→ X∗ (Hg(E1 × E2)) ∼= A/C

σ 7→ [σ],

and this clearly contradicts 2a[σ] = 0. Therefore the rank of C cannot
be 3 and the claim follows.

Finally, note that Proposition 3.4.11 applies to both the above cases and
yields the equality Hg(A) = L(A).

4.2.2 The irreducible case

We proceed by treating the different possibilities for D = End0(A); that
the cases listed in the Theorem are in fact the only possibilities follows by
the Albert classification (Theorem 1.3.2 and the following Remark), and we
now analyze each of them separately. Note that, in each case, the equality
Hg(A) = L(A) will follow easily, once the first group has been described. For
the remainder of this chapter, let H denote Hg(A).
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4.2.2.1 The case D = Q

We know that H is semisimple and contained in Sp(V, ϕ) ∼= Sp4,Q (by Lemma
3.2.9). Extend scalars to C and consider the Lie algebra h of Hg(A)C. VC is
then an irreducible representation of h, since

End (VC)h ∼= End (V )Lie(Hg(A)) ⊗ C ∼= Q⊗ C.

The rank of sp4,C is 2, hence the rank of h ⊆ sp4,C is at most 2. By
semisimplicity of h and the classification of simple Lie algebras we see that
the only possibilities are h ∼= sl2,C, sl2,C × sl2,C, sp4,C or g2.

We want to show that in fact h ∼= sp4,C.

• h cannot be isomorphic to sl2,C: VC would then be an irreducible repres-
entation of dimension 4, hence VC ∼= Sym3(Std) (since representations
of sl2,C are classified by their dimension). Let T be a maximal torus of
HC and t ∈ X∗(T ) be a generator of the character group of T .

The weights of T that occur in the standard representation are {−t, t},
so the weights of T on VC are {−3t,−t, t, 3t}.
We now use that the map

hC ◦ µ : Gm,C → GL(VC)

factors through the Mumford-Tate group of V , which we write as Gm,C ·
HC. As Gm,C is a torus, the image of such a map is contained in a
maximal torus T̃ of MT (V ). We can choose T such that T̃ = Gm,C · T .

Let w, t̃ be generators for X∗
(
T̃
)

, such that t̃ is sent to t by the map

induced on character groups by the inclusion T ↪→ T̃ . Then the weights
of T̃ on VC are cw−3t̃, cw− t̃, cw+ t̃, cw+3t̃ for a certain c ∈ Z. For the
sake of simplicity we identify X∗ (Gm,C) ∼= Z via the character z 7→ z of
Gm,C. Now Gm,C acts on V through hC ◦ µ, and by definition of µ the
weights that occur are −1 and 0; but since hC ◦ µ factors through T̃ , it
gives rise to a map in the reverse direction

X∗
(
T̃
)
→ X∗ (Gm,C)

that is not trivial (since Gm,C acts nontrivially on VC) and Z-linear. We
then get a contradiction by observing that the image of this map (that
is, {−t, 0}) should be be symmetric with respect to 0, and it certainly
is not.

• h cannot be isomorphic sl2,C × sl2,C, since the latter has no faithful
symplectic 4-dimensional representation. To prove this last assertion,
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simply note that the faithful representations of sl2,C × sl2,C are of the
form V1 ⊗ V2 with V1, V2 faithful representations of the factors. This
forces dim(V1) = dim(V2) = 2, which in turn implies that both V1 and
V2 are isomorphic to the standard representation of sl2,C. Since V1 and
V2 are symplectic, V1 ⊗ V2 is orthogonal (and hence non symplectic, by
2.3.2).

• h cannot equal g2, since the latter has dimension 28, while the first is
contained in sp4,C, which has dimension 20.

4.2.2.2 The case of a real quadratic field F

We already know that H is semisimple, thanks to Corollary 3.2.10, and that it
is contained in Sp(V, ψ) for a certain bilinear form ψ, thanks to Lemma 3.2.9.

As a special case of Proposition 3.4.2 we get the following Lemma:

Lemma 4.2.3. There exists a unique F -bilinear form

ϕ : V × V → F

such that

ψ(v1, v2) = trF/Q (ϕ(v1, v2)) ∀v1, v2 ∈ V.

A consequence of this Lemma is that H preserves the F -bilinear form ϕ:
this means at the very least that H < SLF (V ) := ResF/Q(SL2,F ), since a
necessary condition for g ∈ H to preserve ϕ is detF (g) = 1. Let U denote
ResF/Q(SL2,F ).

Note that - by the very definition of U - its tautological representation in
GL(V ) becomes isomorphic to the direct sum of two copies of the standard
representation of SL2,C upon extension of scalars to the algebraic closure.
Write VC ∼= Std1⊕Std2 for this decomposition as UC-representation.

On the other hand, by extending scalars to C we find that HC ↪→ UC ∼=
SL2,C × SL2,C, so by semisimplicity we only have the cases HC ∼= SL2,C and
HC ∼= SL2,C × SL2,C, since H is clearly non trivial. Suppose by contradiction
that HC ∼= SL2,C. Then from the equality

End(VC)HC ∼= End(V )H ⊗Q C ∼= F ⊗Q C ∼= C⊕ C

we see that the only automorphisms of VC ∼= C2 ⊕C2 that commute with HC
are those of the form λ1 IdStd1 ⊕λ2 IdStd2 . This implies that the projections of
G on the two factors SL2,C are surjective, which in turn implies H ∼= SL2 ×
SL2 by part (b) of Lemma 3.3.1, since SL2 admits only one two-dimensional
representation, up to isomorphism. We conclude that HC ∼= SL2,C × SL2,C
and H = ResF/Q(SL2,F ) (which, in particular, coincides with L(A), the group
of endomorphisms of V preserving ϕ).
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4.2.2.3 The quaternion algebra case

Note that D is a skew field of dimension 4 over Q and that V has, by definition,
a structure of D-module. It follows immediately that V is a free D-module
of rank 1, hence we can identify V ∼= D with its natural action of D by left
multiplication. Let ϕ ∈ H. Since the actions of H and D on V = D commute
we get

ϕ(d) = ϕ(d · 1) = dϕ(1) ∀d ∈ D,

so ϕ can be identified to the right multiplication by ϕ(1). Moreover, for every
pair ϕ1, ϕ2 ∈ G we have

(ϕ1 ◦ ϕ2)(1) = ϕ2(1)ϕ1(1),

so we can identify H to a subgroup of (Dopp)∗, where Dopp is the opposite
algebra. Moreover, the discussion in the proof of Lemma 3.2.9 yields

H ⊆
{
x|xx† = 1

}
,

and since † and the standard involution ∗ of Dopp are conjugated by an in-
ner automorphism (this is the Skolem-Noether theorem) we get that H is
isomorphic to a subgroup of

U = {d ∈ (Dopp)∗ |dd∗ = 1} .

Now we know that D is totally undefined, so by extending scalars to C we
find

U(C) = {d ∈ (Dopp ⊗ C)∗ |dd∗ = 1} = {d ∈M2(C)∗|dd∗ = 1} ,

and the canonical involution, upon extension of scalars, becomes the adjunc-
tion of matrices. It then follows

U(C) = SL2(C),

so H is contained in a group U that is a Q-form of SL2(C). But H is
semisimple and SL2,C is simple of rank 1, so HC is either SL2 or trivial.
If it were trivial, then H itself would be trivial, which is absurd, because then
the endomorphism algebra would be all of EndQ(V ), which is certainly not
the case. We then have (up to isomorphism) H ⊂ U and HC = UC, so H is
isomorphic to U , which in turn clearly agrees with L(A).

4.2.2.4 The CM case

The endomorphism algebra D equals F , a CM field of degree 4 over Q con-
taining no quadratic imaginary extension of Q.
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Lemma 4.2.4. The absolute Galois group Gal
(
Q/Q

)
acts transitively on the

set of embeddings F ↪→ Q. More precisely, denoting Σ = {σ, τ, σ, τ} the set of
embeddings, there exists g ∈ Gal

(
Q/Q

)
that acts as

σ 7→ τ 7→ σ 7→ τ .

Proof. Suppose first that F/Q is Galois, and consider the action of Gal(F/Q),

which we write as the quotient
Gal(Q/Q)
Gal(Q/F)

, on the set of embeddings given by

[g] · σ = g ◦ σ ∀σ ∈ Σ,∀g ∈ Gal
(
Q/Q

)
.

This action does factor through Gal(F/Q) by normality of F/Q. As [F :
Q] = 4, Gal(F/Q) is necessarily Abelian, so the only two possibilities are
Gal(F/Q) ∼= (Z/2Z)2 and Gal(F/Q) ∼= Z/4Z. If we were in the first case,
then by Galois theory there would be three quadratic extensions F1, F2, F3

of Q contained in F . Since F contains no quadratic imaginary extension of
Q, F1, F2 and F3 would be real fields, which contradicts the fact that their
composite F is a CM field (and hence it does not admit any embedding in R).

It follows that Gal(F/Q) is cyclic, and it acts as a 4-cycle on the embed-
dings F ↪→ Q: indeed, the stabilizer of each embedding is trivial, whence the
orbit of each embedding has length four, so any generator of Gal(F/Q) acts
as a 4-cycle. In particular, a non-trivial element of Gal(F/Q) has no fixed
points.

Now take a g ∈ Gal
(
Q/Q

)
that projects to a generator [g] of Gal(F/Q) and

let χ denote complex conjugation. If, by contradiction, we had [g]·σ = σ, then
we would also have ([χ][g]) · σ = σ, so [χ][g] would have a fixed point, hence
it would be the identity of Gal(F/Q). But this implies [g] = [χ] ∈ Gal(F/Q),
and this is an element of order 2, contrary to the assumption that [g] is a
generator. Hence g · σ ∈ {τ, τ}, and composing with χ if necessary we can
assume that g sends σ to τ . The same proof as above shows that τ cannot be
sent to τ̄ , nor can it be sent to σ, for otherwise [g] would not act as a 4-cycle.
This implies σ 7→ τ 7→ σ, so the action of [g] is the one we claimed.

On the other hand, suppose that F/Q is not normal. Let E be the maximal
totally real subfield of F . Then F is generated over E by the square root of
an element of E, and since E/Q has degree 2 this shows that F is generated
over Q by a root α1 of a biquadratic polynomial p(x), with α2

1 ∈ E totally
negative. Let α1 = −α1, α2, α2 = −α2 be the other roots of this polynomial.

Let N be the normal closure of F in Q. Clearly N is generated over Q by
α1, α2, so a fortiori is generated over E by α1, α2: as both α1 and α2 are of
degree 2 over E, it follows that [N : E] ≤ 4 and [N : Q] ≤ 8. If [N : Q] = 4
then F = N is normal, contradiction. If, on the other hand, [N : Q] = 8, then
the Galois group of N/Q is isomorphic to the dihedral group on 4 points, since
(up to isomorphism) this is the only transitive subgroup of S4 of order 8.
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In this case, take an element σ of order 4 in Gal (N/Q). Then σ(α1) = ±α2

(if, by contradiction, it sent α1 to −α1, the it would have order 2). By
composing with complex conjugation if necessary we then have σ(α1) = α2,
and by the same reasoning σ(α2) = −α1, so σ acts on the roots of p(x) (or,
equivalently, on the embeddings F ↪→ Q) in the prescribed fashion. As in
the previous case, Gal

(
Q/Q

)
acts through its quotient Gal(N/Q), hence it

contains an element whose action is the one we require.

We now proceed on the same lines as in the case of elliptic curves.

Thanks to the general result of Proposition 3.1.10 we know that Hg(A) is
commutative, hence Lemma 3.2.9 yields

Hg(A) = Z(Hg(A)) ⊆
{
x ∈ ResF/QGm,F |xx = 1

}
=: UF

We now want to study the torus UF and show that it admits no non-
trivial subtori over Q, which in turn will imply that Hg(A) = UF . The
(anti)equivalence of categories of Theorem 1.1.1 brings us to consider the
character group X∗ (UF ). In order to describe this group, we note that UF is
a sub-object of TF := ResF/Q (Gm,F ), whose character group is free of rank 4:
indeed, the general properties of the Weil restriction of scalars imply that

(TF )F
∼= G[F :Q]

m,F ,

so

(TF )C
∼= ((TF )F )C

∼= G4
m,C.

It is natural to take as generators of X∗ (TF,C) the characters induced
by the four embeddings of F into C, which shall be denoted σ, τ, σ̄, τ̄ . Let
Σ = {σ, τ, σ̄, τ̄}. The subtorus UF is defined by xx̄ = 1, so it corresponds to
the quotient

Hom (UF,C,Gm,C) =
Hom (TF,C,Gm,C)

{homomorphisms trivial on those x such that xx̄ = 1}

∼=
⊕

γ∈Σ Zγ
Z (σ + σ̄)⊕ Z (τ + τ̄)

.

We can now show that this character group admits no non-trivial quo-
tients in the category of Gal

(
Q/Q

)
-modules. Lemma 4.2.4 ensures the exist-

ence of an element g ∈ Gal
(
Q/Q

)
acting on Σ by sending σ 7→ τ 7→ σ 7→

τ . Quotients of X∗(UF ) correspond to quotients of X∗ (TF ) by Gal
(
Q/Q

)
-

submodules containing N := Z (σ + σ) ⊕ Z (τ + τ). Let M be any such sub-
module, and suppose M 6= N . Every element of M can be represented as
m = aσ+ bτ + c(σ+ σ) + d(τ + τ). To say that M is strictly larger than N is
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to say that there exists a certain m with (a, b) 6= (0, 0). Without loss of gener-
ality, by adding suitable multiples of σ+σ and τ+τ , we can take (c, d) = (0, 0).
But M is a Gal

(
Q/Q

)
-module, so M also contains g ·m = aτ + bσ, therefore

it contains m′ := g ·m− b (σ + σ) = aτ − bσ and

am− bm′ = (a2 + b2)σ.

The orbit of this last element under the action of g generates a free sub-
module of rank 4, hence the quotient X∗(TF )/M is a finite group. Since
tori over Q correspond to free abelian groups (with a continuous action of
Gal

(
Q/Q

)
), and the only group that is at the same time finite and free is

the trivial one, we conclude that TF does not admit any non-trivial subtorus
defined over Q, as claimed.

Finally, L(A) commutes with ResF/Q (Gm), so it is contained in TF , and
in fact it is also a subgroup of UF , since it preserves the form induced by the
polarization. Now UF = Hg(A), so L(A), UF and Hg(A) must all coincide.



CHAPTER 5
Three conjectures

We collect here the statements of three famous, closely related and (as yet) un-
proven conjectures regarding algebraic varieties, together with a list of results
that may be considered both as evidence and motivation for such conjectures.

5.1 Hodge conjecture

LetX be a complex Abelian variety (or, in fact, any complex Kähler manifold).
A famous theorem of Hodge asserts the existence of a decomposition

Hn (X,C) ∼=
⊕
p+q=n

Hp,q(X),

where Hp,q(X) is the space of cohomology classes that can be represented by
harmonic forms of type (p, q); such a decomposition is therefore compatible
with the cup product.

Definition 5.1.1. Let i : Z ↪→ X be an (analytic) subvariety of complex
codimension k. Since the singular locus has complex codimension ≥ k + 1
(hence real codimension at least 2k + 2), the integration map

H2n−2k
deRham(A) → R

[ω] 7→
∫
Z ω

is well-defined (via Stokes’ theorem) and linear, so by Poincaré duality there
exists a cohomology class [Z] ∈ H2k

deRham(X), called the Poincaré dual of
[Z], such that ∫

Z
ω =

∫
X
ω ∧ [Z]

79
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for every closed form ω.
Let now Lk(X) be the free Abelian group on the subvarieties of complex

codimension k of L. The cycle map is defined to be

cyc : Lk(X) → H2k
deRham(X)∑

ciZi 7→
∑

ci[Zi]

Remark 5.1.2. It can be shown that the cycle map respects rational equival-
ence ([Ful84], Proposition 19.1.1), so there is a notion of cycle map Ak(X)→
H2k
deRham(X), where Ak(X) is the k-th Chow group, the quotient by rational

equivalence of the free Abelian group on subvarieties of codimension k.

Proposition 5.1.3. Let i : Z ↪→ X be a complex submanifold of (complex)
dimension k. Then [Z] lies in Hn−k,n−k(X).

Proof. For every point z ∈ Z we can choose a neighborhood Uz of z in X and

local coordinates x
(z)
1 , · · · , x(z)

n such that

Z ∩ Uz =
{(
x

(z)
1 , · · · , x(z)

n

)
|x(z)
i = 0 for i = k + 1, · · · , n

}
.

By compactness of Z (that is a closed subspace of the compact manifold
X) we can then extract from the collection of the Uz’s a finite open cover
U = {Uj}j=1,··· ,m of Z. Fix a partition of unity ψj subordinated to U and let
α be a differential form of type (p, 2k− p) =: (p, q) defined on the whole of X.

We want to show that unless p = k we have

∫
Z
i∗α = 0.

Using partitions of unity we reduce to a local problem: indeed, for each
index j, the form ψjα has the same type as α, and it is supported in Uj . If
we knew the claim to show holds for forms supported in one of the Uj ’s we
would then have∫

Z
i∗α =

∫
Z
i∗

∑
j∈J

ψjα

 =
∑
j∈J

∫
Z
i∗ (ψjα) = 0.

We can therefore suppose α to be supported in Uj , where we have local

coordinates xi := x
(j)
i . α can then be written as a sum of terms of the

form ϕdxi1 ∧ · · · ∧ dxip ∧ dxl1 ∧ · · · ∧ dxlq , where ϕ is a smooth function and
i1 < · · · < ip. Obviously we can assume this sum to be made of just one term.
Now suppose p > k. Then ip > k, so by our choice of local coordinates in Uj
we have xip ≡ 0 on Z, which clearly implies

i∗α = (ϕ ◦ i) i∗dxi1 ∧ · · · ∧ i∗dxip ∧ i∗dxl1 ∧ · · · ∧ i∗dxlq =

(ϕ ◦ i) i∗dxi1 ∧ · · · ∧ 0 ∧ i∗dxl1 ∧ · · · ∧ i∗dxlq = 0,
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so a fortiori the integral of i∗α on Z is zero. The same argument shows that
if q > k, then lq > k and i∗(α) = 0.

On the other hand, by definition of the Poincaré dual,∫
Z
i∗α =

∫
X
α ∧ [Z],

and we have just shown that this expression is zero for every α not of type
(k, k). Write [Z] =

∑
p+q=2n−2k[Z]p,q for the Hodge decomposition of [Z].

For any non-zero smooth closed form ω of type (p, q) we can find a smooth
form χ of type (n − p, n − q) such that

∫
X ω ∧ χ 6= 0 (it is enough to do this

locally, where it is clear). Applying this to [Z](p,q) we find that all these form
vanish but for [Z](n−k,n−k), so [Z] lies in Hn−k,n−k as claimed.

Definition 5.1.4. Let X be a complex projective manifold. The elements in
the intersection

Bk(X) := Hk,k(X) ∩H2k (X,Q)

are called the Hodge classes of degree 2k.
From now on we will denote B•(X) :=

⊕
k≥0 Bk(X) the Hodge ring of X,

and D•(X) =
⊕

k≥0 Dk(X) the Q-subalgebra of B•(X) generated by divisor
classes.

Remark 5.1.5. We have here a slight conflict of notation with our previous
definition of Hodge classes, but this can be explained as follows: the space
Hk(X,Q) has a Hodge decomposition coming from the Hodge decomposition
of Hk(X,C) through the canonical isomorphism Hk(X,Q)⊗QC ∼= Hk(X,C).

The natural Hodge structure on Hk(X,C) is pure of weight −2k, while
we defined Hodge classes exclusively for structures of weight zero; in order to
connect the two definitions, note that Hodge classes of degree 2k are simply
the Hodge classes (as previously defined) in H2k (X,Q)⊗Q(−k), where Q(−k)
is the Tate structure of pure weight 2k.

Conjecture 5.1.6 (The Hodge Conjecture). Let X be a complex projective
manifold of complex dimension n. Then, for every k = 0, . . . , n, the image of
the cycle map cyc : Ak(X)⊗Z Q→ H2k(X,Q) equals the set Bk(X) of Hodge
classes of degree 2k.

Remark 5.1.7. For k = 0 and k = 2n, the stronger equality

Hk,k(X) ∩H2k (X,Z) = Image
(
cyc : Ak(X)→ H2k(X,Z)

)
trivially holds because of dimension considerations. We can assume X to be
connected, so both H0(X,Z) and H2n (X,Z) are free modules of rank one (the
latter being generated by the fundamental class of X). The Poincaré dual of
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the whole manifold is clearly the constant function 1, that generates H0 (X,Z)
since X is connected, and on the other hand the Poincaré dual of a point p
is the fundamental class of X: indeed, a closed 0-form is a constant function
ϕ ≡ ϕ(p), and we trivially have∫

p
ϕ = ϕ(p) = ϕ(p) ·

∫
X

[X] =

∫
X
ϕ ∧ [X].

This shows that the image of the cycle map contains generators for both
H0(X,Z) and Hn(X,Z), so cyc is surjective.

A powerful tool to study all sorts of questions connected to the cohomology
ring of manifolds is the so-called Hard Lefschetz Theorem, that we state here
for completeness:

Theorem 5.1.8 (Hard Lefschetz Theorem). Let X be a n-dimensional non-
singular complex projective variety. Fix an embedding X ↪→ PnC. Let ω be
the cohomology class in H2(X,Z) of any hyperplane divisor on X. Then, for
every k ≥ 0, taking the k-fold wedge product with ω gives an isomorphism

Hn−k (X,Z) ∼= Hn+k (X,Z) .

5.1.1 The Lefschetz theorem on (1, 1) classes

The first interesting case of the Hodge conjecture (and, to date, the only
one having been completely solved) is k = 1; the Lefschetz theorem on (1, 1)
classes is an even stronger statement ([GH94], pag. 163):

Theorem 5.1.9. We have the equality H2(X,Z)∩H1,1(X) = {[Z]|Z divisor}

Remark 5.1.10. Note that this is stronger than the Hodge conjecture as for-
mulated above, since there we allow the coefficients to vary in Q (and by so
doing, we lose information about the torsion part of the various cohomology
groups). In fact, the original statement of the Hodge conjecture was that
every cohomology class in H2k(X,Z)∩Hk,k(X) is the cohomology class of an
algebraic cycle with integral coefficients on X, but this is now known to be
false (the first counterexample appeared in [AH61]).

Proof. Consider the exponential sequence

0→ Z i−→ OX
exp 2πi·−−−−−→ O∗X → 0

and the segment of the long exact cohomology sequence defining the first
Chern class map,

H1 (X,O∗X)
c1−→ H2 (X,Z)

i∗−→ H2 (X,OX) .
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It can be shown (see for example [GH94], page 141) that the cycle map
agrees with the first Chern class on divisors, so we are left with showing that
c1 surjects onto the space of (integral) Hodge classes. By exactness, this is
equivalent to showing that i∗ vanishes on this space; but we already know
that every Hodge class lies in H1,1(X) (by Proposition 5.1.3), so it is enough
to show that i∗ vanishes on H1,1(X). We can factor the injection i as

Z i1−→ C i2−→ OX ,

so it is enough to show that the induced map (i2)∗ : H2 (X,C)→ H2 (X,OX)
is zero. Using the Hodge decomposition we can write

H2 (X,C) ∼=
⊕
p+q=2

Hp,q(X);

Hodge theory also identifies H0,2(X) with H2(X,OX), in such a way that
(i2)∗ simply becomes the natural projection

(i2)∗ :
⊕
p+q=2

Hp,q(X) � H0,2(X),

which is clearly zero on H1,1(X).

Remark 5.1.11. Combining the above Lefschetz theorem with the aforemen-
tioned Theorem 5.1.8 we see that the Hodge conjecture holds (even in its
integral form) for every Abelian variety of dimension at most 3.

5.1.2 A theorem of Hazama and Kumar Murty

In view of the Lefschetz theorem on (1, 1) classes, there is a simple case in
which the Hodge conjecture holds, namely if the Hodge ring is generated in
degree 2: in this case, all Hodge classes are combinations of products of Hodge
classes of degree 2, which in turn are known to be divisor classes. This leads
naturally to the following definition:

Definition 5.1.12. An exceptional Hodge class is an element of B∗ \D∗.

In what follows we are going to use repeatedly the following criterion, due
(independently) to F. Hazama ([Haz92]) and Kumar Murty ([Mur84]), that
gives necessary and sufficient conditions for the favorable equality D∗ (An) =
B∗ (An) to hold for all the powers of an Abelian variety A.

Theorem 5.1.13. Keeping all of the above notation, we have B∗ (An) =
D∗ (An) for all n ≥ 1 if and only if the following two conditions hold:

• A has no simple factor of type III;

• the Hodge group of A equals the Lefschetz group of A.
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5.2 Tate conjecture

In a much more arithmetic context, Tate asked if a Hodge-like decomposition
could hold for the `-adic étale cohomology of a proper and smooth variety
(with some technical assumptions on the field of definition): as proved by
Tate and Raynaud for Abelian varieties and by Faltings in full generality
([Fal88]), such a decomposition exists, and it shares many properties with the
geometric (Hodge) case.

There is also an abstract definition, which will be given later in this sec-
tion, of modules “of Hodge-Tate type”, the `-adic analogue of abstract Hodge
structures.

A few references for this section are [Tat66], [Ser67] and [Ser79].

Before getting started on the Hodge-Tate decomposition itself let us recall
a few basic facts about the Tate module of an Abelian variety. Let K be
a number field with absolute Galois group ΓK = Gal

(
K/K

)
and A a g-

dimensional Abelian variety defined over K. For every prime `, the K-valued
points of A form a `-divisible Abelian group, and we can consider

Tp(A) = lim
←−

A [`n] ,

where A [`n] is the set of `n-torsion points of AK . T`(A) is called the `-adic Tate
module of A, and it comes equipped with a continuous action of Gal

(
K/K

)
coming from its natural action on A [`n] for every n.

Classical results on abelian varieties show that (since K has characteristic
zero) T`(A) is a free module over Z` of rank 2g and that it can be identified
canonically to the dual (as Galois modules) of the étale cohomology group
H1
ét(A×KK,Z`). It will also be convenient to introduce V`(A) := T`(A)⊗Z`Q`,

which is clearly a Q`-vector space of dimension 2g.

Finally, note that the comparison isomorphism between étale and classical
cohomology yields canonical identifications V` ∼= H1 (A,Q)⊗Q Q`.

We can now turn to the description of the Hodge-Tate decomposition.
Choose a place w of K of good reduction for A and of residue characteristic
`, a place w of K above w and let Iw the absolute inertia group of w. Fix
furthermore a completion C of Q`. There is a natural action of Iw on V`,
which we can extend semi-linearly to V` := V` ⊗Q` C via the formula

σ (v ⊗ c) = σv ⊗ σc ∀σ ∈ Iw,

which makes sense because every automorphism of an `-adic field is automat-
ically continuous, and so the action extends (continuously) to C.

Set

V` {i} =
{
v ∈ V`|σv = χ`(σ)iv ∀σ ∈ Iq

}
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and V`(i) := V` {i} ⊗C. The inclusions V` {i} ↪→ V` extend, by a theorem of
Tate-Serre ([Ser67], Proposition 4), to an injection⊕

i

V`(i) ↪→ V `.

The key result Tate and Raynaud were able to prove is that this is in fact
an isomorphism, so that we have a Hodge-style decomposition

H1
ét

(
AK ,Q`

) ∼= V`(0)⊕ V`(1);

moreover, there are natural identifications

V`(0) ∼= Lie (AC) , V`(1) ∼= Lie
(
A∨C
)

(1),

where A∨ is the dual Abelian variety. We record it here as a theorem:

Theorem 5.2.1. If A has good reduction at a place w of residue characteristic
`, then

H1
ét

(
AK ,Q`

) ∼= Lie (AC)⊕ Lie
(
A∨C
)

(1)

Remark 5.2.2. More generally, let K be an `-adic field and VC be a finite-
dimensional ΓK := Gal

(
K/K

)
-module over C. Let

VC {n} :=
{
x ∈ VC|g · x = χ(g)−nx ∀g ∈ ΓK

}
(notice that these are only K-, and not C-, subspaces of VC) and

VC(n) := VC {n} ⊗K C(−n).

The aforementioned result of Tate and Serre ([Ser67], Proposition 4) im-
plies the existence of an injective, canonical morphism of ΓK-modules⊕

n∈Z
VC(n) =

⊕
n∈Z

(VC {n} ⊗C(−n)) ↪→ VC,

and a module is said to be of Hodge-Tate type if this is an isomorphism. If
W is a ΓK-module defined over Q`, then W is said to be of Hodge-Tate type
if W ⊗Q` C is Hodge-Tate in the above sense.

Tate-Raynaud’s theorem can then be restated by saying that the Galois
module afforded by the Tate module of an Abelian variety (of good reduction
at a place dividing `) is of Hodge-Tate type.

Building on this result, Tate also formulated an analogue of the Hodge
conjecture for `-adic cohomology, proposing that a connection should exist
between the algebraic cycles on smooth varieties and the Galois modules af-
forded by their étale cohomology groups.
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Let X be a smooth projective variety over a field k (finitely-generated over
its prime field). Fix a separable closure k of k, a rational prime ` and let Γk
be the absolute Galois group of k. Let H•(X) be the `-adic cohomology of the
base extension of X to k, endowed with its natural Γk-module structure, and
consider H2i(X)(i), the i-fold Tate twists of the even-numbered cohomology
groups. Write Γ` for the image of Γk inside GL

(
H2i(X)(i)

)
(which is an `-

adic compact Lie group) and g` for its Lie algebra. With this notation, the
Tate conjecture reads

Conjecture 5.2.3 (Tate Conjecture). The g`-invariants inside H2i(X)(i) are
generated (as Q`-vector space) by the classes of algebraic cycles.

As for the structure of g` we have the following result:

Theorem 5.2.4 (Bogomolov, [Bog80]). g` is algebraic (that is, g` is also the
Lie algebra of G`) and it contains the homotheties.

As a corollary, we can always write g` = Q` id⊕h` where h` - the set of
elements of trace zero - plays a role analogue to that of the Hodge algebra in
the geometric case (in fact, h` = Lie(H`)). Note that passing from an `-adic
Lie group to an open subgroup does not change its Lie algebra, so g` does not
change under finite extensions of K (whereas G` can change); therefore, we
can always enlarge K so that all the endomorphisms of A are defined over K
without altering g`, and we will always work under this assumption.

Also, note that G` is not necessarily connected, but replacing K by a finite
extension we can (and will) assume that this is the case; moreover, this finite
extension can be chosen independently of ` (see Theorem 3.3.2 in [Ser85] and
Section 3.b of [Chi90]).

Remark 5.2.5. An equivalent way of stating the Tate conjecture is through the
notion of Tate classes, that is to say, cohomology classes c in H2i

ét

(
Xk,Q`

)
such that the action of every σ ∈ Γk is given by σ · c = χ(σ)−ic, where χ
denotes the `-adic cyclotomic character.

Note that the conjecture can be formulated for arbitrary smooth projective
varieties, but we will only discuss the setting of Abelian varieties. In this
case, if we set V = H1 (A,Q) and V` = V ⊗ Q`, we have, as discussed at the
beginning of the section, a canonical identification V` ∼= V`(A); moreover, for
every n we have a natural isomorphism of Gal(K/K)-modules

Hn
ét

(
AK ,Q`

) ∼= Hom

(
n∧
V`,Q`

)
,

so we can basically reduce all of our study to the Galois module V`.
Finally, note that - in complete analogy to the geometric case - if E is

a subfield of End0(A), then V` acquires the structure of a free E` := E ⊗
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Q`-module of rank 2 dim(A)
[E:Q] . If ϕ : V × V → Q is the Riemann form of a

polarization, then ϕ induces a form ϕ` on V`, and our arguments on bilinear
forms now translate in the statement that there exists a E`-bilinear (resp.
Hermitian, in the CM case) form on V` that is preserved by the action of h`.
With obvious notation, we will write h` ⊆ spE` (V`, ψ`) (resp. h` ⊆ uE` (V`, ψ`)
in the CM case).

Definition 5.2.6. The Tate ring of a variety A (defined over a number field
K) is T •` (A) =

⊕
i T

i
` , where T i

` is the space of Tate classes in H2i
ét

(
AK ,Q`

)
Faltings proved, in his famous paper [Fal83], the analogue of the Lefschetz

theorem on (1,1) classes (Theorem 5.1.9), namely that every Tate class in
the second étale cohomology group is a linear combination of divisor classes
with coefficients in Q`. From now on, let D•` (A) be the sub-algebra of T •` (A)
generated by divisor classes. It follows from Faltings’ result that the Tate
conjecture, pretty much like in the geometric case, holds in every codimension
as soon as the Tate ring is generated by divisor classes; minor modifications
of the proof of Theorem 5.1.13 yield an `-adic criterion for this to hold not
only for A but for its powers as well,

Theorem 5.2.7. Necessary and sufficient conditions for the equality

T •` (An) = D•` (An)

to hold for every n ≥ 1 are

• A has no simple factor of type III

• h` = spEnd0(A)⊗Q` (V`, ϕ`), where ϕ` is the alternating bilinear form in-
duced on V` by the choice of a polarization

Remark 5.2.8. The analogous of the Hard Lefschetz Theorem was proved by
Deligne in [Del80], so the Tate conjecture holds for every Abelian variety of
dimension at most 3.

Hodge-Tate modules arising from Abelian varieties thus bear a great re-
semblance to Hodge structures, and it is easy to conjecture results analogous
to those of Chapter 3: in many cases, these are known to be true, and we
will see in the next section that this has led to the formulation of a general
conjecture relating the geometric Hodge decomposition and the arithmetic
Hodge-Tate structure.
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5.3 Mumford-Tate conjecture

Let A be an Abelian variety over a number field K. Fix a prime number ` and
let T`(A) be the `-adic Tate module of A. Let furthermore V`(A) = T`(A)⊗Q`

and
ρ` : Gal

(
K/K

)
→ Aut (T`(A)) ↪→ GL (V`(A))

be the associated Galois representation. The image of ρ` is an `-adic Lie
subgroup of GL (V`(A)); let G` be its Zariski closure, i.e. the smallest algebraic
subgroup of GL (V`(A)) containing it. By analogy with the geometric case, we
also introduce the `-adic version of the Hodge group, H`, which we define as
the connected component of the identity of G` ∩SL (V`(A)). Let furthermore
g` the Lie algebra of Im (ρ`).

A fundamental problem is to determine the Lie algebras g` for varying `;
a conjectural answer to this question is given by the Mumford-Tate con-
jecture.

Conjecture 5.3.1 (Mumford-Tate Conjecture). Fix an embedding K ↪→ C,
so that A acquires the structure of an Abelian variety over C. Let G be the
Mumford-Tate group of A, g be its Lie algebra and g` be as above.

Then for every rational prime ` the equality g` = g⊗Q` holds inside gl(V`).

Remark 5.3.2. In the presence of the Mumford-Tate conjecture, the Hodge
and Tate conjectures are equivalent.

Many partial (but still very deep) results have been established that go in
the direction of the above conjecture. We state here, without proofs, the main
ones.

Theorem 5.3.3 (Faltings, [Fal83]). The Lie algebra g` is reductive and its
centralizer in End(V`) equals End0(A)⊗Q`.

Theorem 5.3.4 (Sen, [Sen73]; cf. Proposition 3.1.2). Let V be a module of
Hodge-Tate type over Q` and Φ ∈ EndC (VC) be the element such that the
restriction of Φ to V (i) is multiplication by i.

Then the Lie algebra of G` is the smallest Q`-subspace g of EndQ`(V ) such
that g⊗Q` C contains Φ.

Also, reasoning along the same lines of Corollary 3.2.10 it is possible to
show that if A has no simple factor of type IV, then h` is the semi-simple part
of g`.

Another key tool for working in the `-adic setting is the following theorem
of Serre

Theorem 5.3.5 ([Ser85] 2.2.4). The rank of g` is independent of `.

Moreover, Deligne has proved ’one half’ of the conjecture, namely
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Theorem 5.3.6 ([DMOS82], I, Proposition 6.2). For every rational prime `
the inclusion G` ⊆MT (A)⊗Q` holds.

As a consequence of the above results it can be shown that the Mumford-
Tate conjecture (for a fixed A) holds for every prime whenever it holds for at
least one prime ([LP95], Theorem 4.3).

Finally, we note here that the Mumford-Tate conjecture is known for CM
varieties: this has been pointed out by Ribet in [Rib90] and is essentially due
to Taniyama and Shimura, see [ST61].





CHAPTER 6
Computing Mumford-Tate

groups

We are now in a position to prove properties of the Mumford-Tate groups that
will lead, in some particular cases, to its precise determination.

After having fixed our notation, in 6.2 we prove that the tautological rep-
resentations of Mumford-Tate groups are defined by minuscule weights. We
follow here the approach of Zarhin ([Zar85], Theorem 0.5.1), but note that
the result was already known to Serre ([Ser79], Proposition 7), who had given
a different proof.

As a first application, in 6.3 we recount the proof of a theorem, due to Pink
([Pin98], Theorem 5.14), on varieties with endomorphism ring Z and whose
dimension lies outside an exceptional set which can be described explicitly.

The next section is then dedicated to a more concrete description of the
Lefschetz group, which will allow us to identify, in 6.5 and 6.6, some cases
where the equality between the Hodge and Lefschetz groups holds.

6.1 Notation

We now fix the notation we will constantly be using from now on; we want it to
be tailored in a way that allows us to treat geometric and `-adic questions al-
most at the same time. We will therefore use the symbols g, h, V,Q,C, E, ϕ, ψ
to mean

• in the geometric case,

g = Lie(MT (A)), H = Hg(A), h = Lie(Hg(A)), V = H1(A,Q),

Q = Q,C = C, D = End0(A),

91
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ϕ the bilinear form induced on V by the choice of a polarization,

ψ the D−bilinear or skew-Hermitian form inducing ϕ by taking traces;

• in the `-adic case,

g = Lie(G`(A)), H = H`(A), h = Lie(H`(A)), V = V`,

Q = Q`,C = Q̂`, D = End0(A)⊗Q`

and ϕ,ψ as above (with the appropriate meaning of V,D).

6.2 Mumford-Tate representations are minuscule

Let G be a reductive group over a field k, and let K be an algebraically closed
field of characteristic zero containing k. Write GK as almost-direct product
G0 ·G1 · · ·Gn of its center G0 and its simple factors G1, . . . , Gn. Let g be the
Lie algebra of GderK and gi, i = 1, . . . , n be the (simple) Lie algebra of Gi; let
furthermore c be Lie (G0,K), which is canonically isomorphic to X∗(G0,K)⊗K.
We clearly have Lie(GK) ∼= c× g.

Write G′i := GK/
(
G0G1 · · · Ĝi · · ·Gn

)
, where the symbol Ĝi means that

the factor Gi is omitted in the product. Let pi be the canonical projection
GK � G′i. Let furthermore γ : Gm,K → GK be a cocharacter of G. Applying
the functor Lie to γ we get a homomorphism of Lie algebras over K,

Lie(γ) : Lie (Gm,K) ∼= K → c× g1 × · · · × gn ∼= Lie(GK).

Let us consider Lie(γ) as linear map from K to c× g1× · · · × gn and write
the image of x as (l0(x), l1(x), . . . , ln(x)).

As Gm,K is a torus, we can choose a maximal torus of GK containing the
image of γ; such a choice induces a choice of Cartan subalgebras hi of gi such
that Lie(γ) factors through c×h1×· · ·×hn. Moreover, we can choose maximal
tori Hi ⊂ G′i such that Lie(Hi) ∼= hi. Let Ri be the root systems associated
to the Cartan subalgebras hi and R be the root system of g.

Dualizing the K-linear map Lie(γ) we get a morphism

ϕγ : c∨ × h∨1 × · · · × h∨n → K

(λ0, λ1, · · · , λn) 7→ λ0 ◦ l0(1) + λ1 ◦ l1(1) + · · ·+ λn ◦ ln(1).

Lemma 6.2.1. Let ϕγ be as above. Then ϕγ (X∗ (G0,K)× P (R)) ⊂ Q.

Proof. Let χ ∈ X∗ (G0,K) be a character. Then

χ ◦ l0(1) = Lie (χ ◦ p0 ◦ γ) (1)
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is an integer, since χ ◦ p0 ◦ γ is an endomorphism of the multiplicative group.
For a root system (V, S) let Q(S) be the lattice generated by S in V .

Then, for i = 1, · · · , r, we have inclusions Q(Ri) ⊂ X∗(Hi) ⊂ P (Ri), where
both Q(Ri), P (Ri) are lattices in the same vector space (so that the first has
finite index in the second). In particular, for every weight λi ∈ P (Ri) there
exists ni ∈ Z such that niλi ∈ X∗(Hi), i.e. niλi equals a certain character
χi : Hi → Gm. But then niλi ◦ li(1) = Lie (χi ◦ pi ◦ γ) (1) ∈ Z as before, so
ϕγ(λi) ∈ Q, as we wanted to show.

Let us now suppose that ρ : G ↪→ GLV is a finite-dimensional, faithful
representation of G. Extending scalars to K we get a representation VK of
GK ; let W be an irreducible subrepresentation of VK . The algebra g being
semi-simple by hypothesis, we have (thanks to Theorem 2.3.4) a decomposition

W ∼= (K,χ0) � (W1, ρ1) � · · ·� (Wn, ρn)

of W as external tensor product of irreducible representations of the factors c
and gi. As G0 is a torus, its only irreducible representations (over an algeb-
raically closed field) are one-dimensional spaces where the action is given by
a character χ0.

Let now λi denote the highest weight of the representation Wi and Xi its
full set of weights.

Lemma 6.2.2. Consider the representation ρ ◦ γ : Gm,K → GLW,K and let
N + 1 be the number of its different weights. Let I = {i|pi ◦ γ is not trivial}.

Then
∑

i∈I l(λi) ≤ N .

Before proving this lemma we record a simple result we will need:

Lemma 6.2.3. Let {Ai}i=1,··· ,r be a finite family of finite subsets of Q. Denote

by
r∑
i=1

Ai the subset of Q given by

{a1 + · · ·+ ar|ai ∈ Ai ∀i = 1, . . . , r} .

Then |
∑r

i=1Ai| ≥
∑r

i=1 |Ai| − (r − 1).

Proof. Induction shows that it is enough to do the case r = 2. For this, note
that adding a to all the elements of A2 and subtracting a from all the elements
of A1 leaves A1 + A2 untouched, so we can assume that all the elements in

A2 are non-negative and that 0 is one of them. Let a
(1)
1 < · · · < a

(1)
|A1| (resp.

a
(2)
1 = 0 < · · · < a

(2)
|A2|) be an enumeration of the elements of A1 (resp. A2).

Then the numbers a
(1)
1 + 0, · · · , a(1)

|A1| + 0, a
(1)
|A1| + a

(2)
2 , · · · , a(1)

|A1| + a
(2)
|A2| are all

distinct by construction and belong to A1 +A2, so this last set has cardinality
at least |A1|+ |A2| − 1.



94 CHAPTER 6. COMPUTING MUMFORD-TATE GROUPS

We can now prove Lemma 6.2.2:

Proof. The set P (W ) of weights of ρ is clearly {χ0} ×X1 × · · · ×Xn; the set
of weights of ρ ◦ γ is then given by ϕγ(P (W )), so by definition of N we have

N + 1 = |ϕ(P (W ))| = |ϕγ ({χ0} ×X1 × · · ·Xn)|

=

∣∣∣∣∣{χ0 ◦ l0(1)}+
n∑
i=1

ϕγ (Xi)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

ϕγ (Xi)

∣∣∣∣∣ ,
where the last equality holds since trivial factors only contribute one weight.
The above Lemma then yields the inequality

N + 1 =

∣∣∣∣∣∑
i∈I

ϕγ (Xi)

∣∣∣∣∣ ≥∑
i∈I
|ϕγ (Xi)| − (|I| − 1),

whence N ≥
∑

i∈I (|ϕγ (Xi)| − 1); on the other hand, Lemma 2.4.13 implies
that |ϕγ (Xi)| − 1 ≥ l(λi), so the claim follows.

We now apply all of the above to the case of Mumford-Tate (and Hodge)
groups. To this end, we take k = Q and K = C, and for G the Mumford-Tate
group M of a polarizable Hodge structure V (of pure weight n), which we know
to be reductive. The representation ρ : M → GLV will be the tautological
one, and as cocharacter γ : Gm,C → MC we take hC ◦ µ. The action of z
through hC ◦ µ is given by ⊕

p∈Z
zp IdV p,n−p ,

so each character of the representation γ corresponds to a non-trivial space
V p,n−p in the Hodge decomposition of VC. We then have the following im-
portant theorem:

Theorem 6.2.4. Keeping the above notation, let moreover N + 1 be the
number of integers p such that V p,n−p 6= (0). Then l(λj) ≤ N for every
j = 1, . . . , r.

Proof. This follows immediately from Lemma 6.2.2 for those indices j such
that γ has a non-trivial component in the simple factor Gj .

We can reduce to this case for every simple factor of M by exploiting the
fact that this group is defined over Q.

Fix a maximal torus T of M . The image of γ : Gm,C → MC is contained
in a maximal torus T̃ of MC, and since all maximal tori are conjugated we
find that T̃ is M(C)-conjugated to TC. But T is defined over Q, hence it
splits over Q, so the above conjugation argument yields another cocharacter
(defined over Q) δ : Gm,Q →MQ such that δC is M(C)-conjugated to γ.
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We can now make use of the action of Gal
(
Q/Q

)
on this δ to get a

cocharacter inducing non-trivial representations on each simple factor of MC.
More precisely, for each σ ∈ Gal

(
Q/Q

)
consider the cocharacter σδ and

let Iσ = {i|σδ has a non-trivial component in Gi}. Let furthermore I :=⋃
σ∈Gal(Q/Q) Iσ. Then the algebraic group

M ′Q := Z(G)Q ·
∏
i∈I

Gi,Q

is normal in M (since it is an almost-direct product of normal subgroups)
and is defined over Q, since by definition of I the action of Gal

(
Q/Q

)
can

only permute the factors appearing in the product. Now M ′C factors δC, δC
and γ are M(C)-conjugated, and M ′ is normal in M , hence M ′C factors γ.
As M ′ < M , the minimality of the Mumford-Tate group (with respect to
the property of factoring γ) implies M ′ = M , so every simple factor Gi of
MC appears in the product defining M ′: by construction of I, then, for every
i there is a σi such that σiδ has a non-trivial component in Gi. Since the
representations afforded by σδC, δC and γ clearly have the same number of
non-trivial weights, the claim follows from Lemma 6.2.2 applied to σδ instead
of γ.

Corollary 6.2.5. Let A be an Abelian variety, V = H1(A,Q) and M the
Mumford-Tate group of A. Furthermore, let ρi denote the representation of
the simple factor Gi of MC induced by the tautological representation of M .
Then, for every i, Gi is of classical type and every irreducible subrepresentation
Wi of ρi is defined by a minuscule weight.

Proof. Let ωi denote the highest weight of Wi.

V has weight −1, hence in the Hodge decomposition of VC we only have
two non-trivial factors. With the notation of the above Theorem, this forces
N = 1, so l(ωi) = 1, hence Wi is minuscule and Gi is of classical type because
of Proposition 2.4.12.

With rather different techniques, Pink has shown the `-adic analogue of
the above result, namely, he proves the following theorem (Corollary 5.11 of
[Pin98]):

Theorem 6.2.6. Each simple factor of the root system of G0
` has type A,

B, C, or D, and its highest weights in the tautological representation are
minuscule.
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6.3 A theorem of Pink

The paper [Pin98] also contains the following result, giving sufficient condi-
tions (on the dimension and on the endomorphism algebra) for the Mumford-
Tate conjecture to hold.

Theorem 6.3.1. Suppose A is an Abelian variety of dimension g (defined
over a number field K), such that

• End(A) ∼= Z

• 2g is not a kth power for any odd k > 1, nor of the form
(

2k
k

)
for any

odd k > 1.

Then MT (A) ∼= CSp2g,Q and G` = CSp2g,Q`. In particular, the Mumford-
Tate conjecture holds for A.

Proof. We take the uniform notation introduced in 6.1. Note that it is enough
to prove that H ∼= Sp2g,Q.

As a first step observe that A is simple, since if A is isogenous to Ae11 ·...·Aenn ,
where the Ai’s are simple and pairwise non-isogenous Abelian varieties, then

End(A) ∼=
n∏
i=1

Mei×ei (End(Ai)) ,

where Me×e(R) is the set of square matrices of order e with coefficients in R.
The equality End(A) = Z then clearly forces n = 1 and e1 = 1; we also see
that A is of type I in the Albert classification, so H is semisimple.

The hypothesis End(A) = Z also implies that VC is an irreducible repres-
entation of H:

End(V ⊗C)hC ∼= End(V )h ⊗C ∼= Z⊗C ∼= C,

so the claim follows by Schur’s lemma.

Write HC
∼= G1 · ... · Gn for the decomposition of HC as almost-direct

product of its simple factors, gi for the Lie algebra of Gi and

VC ∼= V1 � · · ·� Vn

for the decomposition of VC as (exterior) tensor product of irreducible repres-
entations of the factors gi.

Lemma 6.3.2. All the simple factors Gi are isomorphic to each other over
Q. Moreover, all the representations Vi are isomorphic to each other.
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Proof. This is basically the same argument as in the proof of Theorem 6.2.4.
Consider the cocharacter δ : Gm,Q →MQ introduced there. We show that

δ has non-trivial components in exactly one simple factor.
Suppose this is not the case. If Gj1 , Gj2 are two factors in which δ has non-

trivial components, let X1, X2 be the set of weights of gj1 , gj2 that intervene in
the Lie algebra representations induced by h ◦ pj1 ◦ δ and h ◦ pj2 ◦ δ (note that
these applications are not well-defined as group morphisms, but do exist at the
level of Lie algebras, since pj induces an isomorphism between the Lie algebra
of Gj and that of G′j). By hypothesis |X1| ≥ 2, |X2| ≥ 2, so the representation
induced on the Lie algebra of HC by h◦δ has at least |X1|+ |X2|− (2−1) ≥ 3
weights because of Lemma 6.2.3. But hC ◦ δC has as many weights as hC ◦ µ,
and this last representation only has two, corresponding to the two non-trivial
spaces in the Hodge (resp. Hodge-Tate) decomposition, contradiction.

It follows that δ only has non-trivial components in one simple factor, and
the proof of Theorem 6.2.4 shows that the orbit of this simple factor under
the action of Gal

(
Q/Q

)
must be the whole set of simple factors of H: these

simple factors are therefore conjugated under the action of Gal
(
Q/Q

)
, hence

all isomorphic.
The second statement then follows immediately from the transitivity of

the Galois action.

As H is a subgroup of the symplectic group by Lemma 3.2.9 (or its `-
adic counterpart), VC is a symplectic representation of HC: Corollary 2.3.6
then implies that each factor Vi is self-dual. Moreover, all the algebras gi
are isomorphic to each other, and the representations of the gi’s afforded by
the Vi’s are isomorphic because of the above Lemma. Note furthermore that
each (self-dual) factor is either orthogonal or symplectic, and the number of
symplectic factors is odd (if it were even, the product would be orthogonal),
so there is at least one symplectic factor. Since all the factors are isomorphic
to each other by the above discussion, their number n is odd, for otherwise
the product would again be orthogonal.

We then have
2g = dimC VC = (dimC V1)n

where n is odd, hence n = 1 by hypothesis. Using the irreducibility of V1, it
follows from Corollary 6.2.5 (resp. Theorem 6.2.6) that this representation is
minuscule and the algebra g1 is of classical type, so we just need to check the
list given in theorem 2.4.6 for symplectic representations of classical algebras.
We see that the following are the only possibilities:

• g1 is of type A2s−1, s odd, and dimV1 =

(
2s

s

)
;

• g1 is of type Bl with l ≡ 1 or 2 (mod 4), and dimV1 = 2l;
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• g1 is of type Cl, and dimV1 = 2l;

• g1 is of type Dl, l ≡ 2 (mod 4), and dimV1 = 2l−1.

As 2g = dimC VC = dimC V1 is not of the form
(

2s
s

)
for any odd s > 1, the

first case cannot happen unless s = 1, but then A1
∼= C1 and we are in case

(3).

Case (4) cannot happen either, since then l−1 would be odd and 2g would
be an odd power (of 2), which is again against the hypotheses; finally, case
(2) is impossible, too, since either l is odd, and then dimV1 is an odd power,
or l ≡ 2 (mod 4), and then 2l = 4l/2 is again an odd power, which is against
the hypotheses.

We deduce that we always are in case (3), hence HC
∼= Sp2g,C and H ∼=

Sp2g,Q.

6.4 On the Lefschetz group

We now try to unwind the definition of L(A), in order to get a more expli-
cit description of this group. The result that follows (essentially taken from
[Mur84], Lemma 2.3) gives a fairly clear picture of what L(A) looks like.

We start by fixing our notation. Let A be a simple Abelian variety over
C, D its endomorphism algebra. Let furthermore E denote a fixed subfield
of D, taken to equal D for varieties of type I and chosen among the maximal
CM-subfields of D in the remaining cases, and let E+ be the maximal totally
real subfield of E.

Write Vλ for V ⊗E+,λR, where λ ranges through the set Σ (E+) of embed-
dings E+ ↪→ R.

For varieties not of type I, Vλ has a natural complex structure coming from

the action of E ⊗ R ∼=
⊕

λ∈Σ(E+)

C on V ⊗ R ∼=
⊕

λ∈Σ(E+)

Vλ. We shall write V C
λ

when Vλ is regarded as a C-vector space through this action (in particular,
note that V C

λ is not the same object as Vλ ⊗ C).

Finally, let F be the center of D and F+ its maximal totally real subfield.
Then:

Proposition 6.4.1. • L(A)R ⊂
∏
λGL (Vλ);

• the L(A)R-modules Vλ1 and Vλ2 are isomorphic if and only if λ1|F+ =
λ2|F+;

• if A is of type I, the projection of L(A)R to GL(Vλ) is Sp
(
V C
λ , ωλ

)
with

respect to an appropriate skew-symmetric form ωλ on V C
λ ;
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• if A is of type II, the projection of L(A)R to GL(Vλ) can be described as
the intersection

U
(
V C
λ , ω

1
λ

)
∩ Sp

(
V C
λ , ω

2
λ

)
,

where ω1
λ (resp. ω2

λ) is a Hermitian (resp. skew-symmetric) form on
V C
λ .

Proof. The first point amounts to saying that every Vλ is L(A)-stable, and it
follows from arguments analogous to those of Section 1.1.4, essentially because
the actions of L(A) and E commute.

By definition of L(A) we have the inclusion L(A) ⊇ Hg(A), so

D = End(V )Hg(A) ⊇ End(V )L(A).

On the other hand End(V )L(A) ⊇ D, as L(A) commutes with D: it follows
that the endomorphisms of V as a Hg(A)-representation and as an L(A)-
representation are the same. Extending scalars to C we get a decomposition
VC ∼=

∏
σ∈Σ(E) Vσ; as E is a maximal subfield of D, the group EndHg(A),E(V )

- which equals the centralizer of E in D - is just E. By tensoring with C we
get

End (VC)Hg(A) ∼= E ⊗ C = CΣ(E),

so each Vσ is a simple representation of Hg(A)C, hence of L(A)C.

On the other hand, we could instead consider the decomposition of VC
with respect to the action of F . Write it as VC ∼=

∏
τ∈Σ(F )Wτ . Then clearly

Wτ = {v ∈ VC|f · v = τ(f)v ∀f ∈ F} is the direct sum of the Vσ’s such that
σ|F = τ , and if q denotes [E : F ] every embedding of F in C admits exactly
q different extensions. Comparing endomorphism algebras we get (note that
q ∈ {1, 2})

Mq(C) ∼= D ⊗F,τ C = End (Wτ )Hg(A)C =
∏

σ1,σ2:σi|F=τ

Hom (Vσ1 , Vσ2)Hg(A)C .

Each space HomHg(A)C (Vσ1 , Vσ2) has dimension at most one (by Schur’s
lemma, which applies because each Vσ is simple); the equality

q2 =
∑

σ1,σ2:σi|F=τ

dimC

(
Hom (Vσ1 , Vσ2)Hg(A)C

)
then shows that each one of them has dimension exactly one: the sum on
the right involves q2 terms, so each one must contribute with exactly 1. It
follows that Vσ1

∼= Vσ2 as L(A)-modules (or, equivalently, Hg(A)-modules) if
and only if σ1|F = σ2|F . Finally, since Vλ = Vσ ⊕ Vσ, we see that two Vλ’s
are isomorphic exactly when the corresponding λ’s agree on the set of fixed
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points for the action of complex conjugation on F , i.e. when they agree on
F+.

As for the last two points, observe that the arguments in Section 1.1.4
yield the existence of an L(A)-invariant form ψλ on each factor Vλ, hence the
projection of L(A) to GL(Vλ) is given by the set of Dλ-linear automorphisms
of Vλ that preserve ψλ, where Dλ := D ⊗F,λ R.

If A is of type I, then Dλ is simply R, so the condition of being Dλ-linear
is void and the projection of L(A) to GL(Vλ) is simply Sp(Vλ, ψλ), as claimed.

If A is of type II, then D is split at every infinite place, so Dλ
∼= M2(R) and

we can choose two elements α, β ∈ Dλ such that α2 = 1, β2 = −1, βα = −αβ

(this is clear in the matrix algebra: take for example α =

(
1

1

)
, β =(

−1

1

)
). This essentially identifies Dλ with R⊕Rβ⊕Rα⊕Rβα ∼= C⊕Cα,

and β can be chosen so that the natural action of C coming from E ⊗Q R
coincides with the action of the first factor C in this decomposition. From
the details of the proof of the Albert classification we know that the positive
involution on D extends to an involution ρ on Dλ in such a way that, under the
identification Dλ

∼= M2(R), ρ becomes the usual transposition of matrices. We
therefore have αρ = α, βρ = −β. We can then extend this ρ to (not necessarily

square) matrices with coefficients in Dλ by setting (aij)
ρ =

(
aρij

)t
. Note that

this ρ is simply complex conjugation on the first factor C appearing in the
decomposition Dλ

∼= C⊕Cα, but it is the identity on the second: indeed, our
assumptions on α, β imply (βα)ρ = αρβρ = α (−β) = βα.

From now on, we shall think of Vλ as a module over C ⊕ Cα; if d is the
dimension of Vλ over Dλ, choosing bases allows us to write a vector v as
v1 + v2α with v1, v2 (row) vectors in Cd, and linear transformations of Vλ as
M1 +M2α with M1,M2 ∈Md(C). Recall now that ψλ is Dλ-skew-Hermitian,
i.e. ψλ(w, v) = −ψλ(v, w)ρ. By bilinearity we can write our form ψλ as

ψλ (v1 + v2α,w1 + w2α) = (v1 + v2α)(T1 + T2α)(w1 + w2α)ρ,

and using w2α = αw2 (which follows from αβ = −βα) we rewrite the above
as

ψλ (v1 + v2α,w1 + w2α) = (v1, v2)M1(w1, w2)t + (v1, v2)M2(w1, w2)tα,

where M1,M2 are the following 2d× 2d matrices:

M1 =

(
T1 T2

T2 T1

)
M2 =

(
T2 T1

T1 T2

)
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The condition ψλ(w, v) = −ψλ(v, w)ρ implies T ρ = −T , so T ρ = T1
t
+T t2α

and T1 is skew-Hermitian while T2 is skew-symmetric. It is immediate to check
that the same holds for M1,M2. It follows that a C-linear endomorphism A
of Vλ preserves ψλ if and only if it leaves invariant the Hermitian form ω1

λ

associated to −iM1 and the skew-symmetric form ω2
λ associated to M2. But

it in fact, an endomorphism preserving the two is automatically Dλ-linear:
write π1 (resp. π2) for the projection of Dλ on C (resp. Cα).

By our choices of α, β we have, π1(α(z1 + z2α)) = π1(z1α + z2) = z2 =
π2(z1 + z2α), and similarly π2(α(z1 + z2α)) = π1(z1 + z2α). Observe that
preserving ω1

λ (resp. ω2
λ) amounts to preserving the skew-Hermitian (resp.

skew-symmetric) form π1 ◦ ψλ (resp. π2 ◦ ψλ). Then, if A is a C-linear auto-
morphism preserving the two, we have

π1 (ψλ(αAv,Aw)) = π1 (αψλ(Av,Aw)) (Dλ-linearity)

= π2 (ψλ(Av,Aw)) (π1 ◦ α = π2)

= π2 (ψλ(v, w)) (A preserves π2 ◦ ψλ)

= π1 (αψλ(v, w)) (π1 ◦ α = π2)

= π1 (ψλ(αv,w)) (Dλ-linearity)

= π1 (ψλ(Aαv,Aw)) (A preserves π1 ◦ ψλ);
similar computations show

π2 (ψλ(αAv,Aw)) = π2 (ψλ(Aαv,Aw)) ,

so ψλ(αAv,Aw) = ψλ(Aαv,Aw), and by non-degeneracy αA = Aα, so A is
Dλ-linear.

Putting everything together, we have shown that the projection of L(A)R
to GL(Vλ) is exactly the intersection

U
(
V C
λ , ω

1
λ

)
∩ Sp

(
V C
λ , ω

2
λ

)
.

Corollary 6.4.2. Let A be simple of type II and l the Lie algebra of L(A).
Then the action of lC on VC can be described as follows: lC is isomorphic

to the product ∏
λ∈Σ(E+=F )

spd,C,

where

d = dimC Vλ =
1

2
dimR Vλ =

1

2
· 1

[E+ : Q]
dimQ(V ) =

2 dim(A)

2[F : Q]
=

dim(A)

[F : Q]
,

and the representation it defines on VC is isomorphic to two copies of �
λ

Stdλ,

where Stdλ is the standard representation of the copy of spd,C indexed by λ.
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Proof. First note that lR equals the product of its projections on the factors
gl(Vλ). This follows from Lemma 3.3.1, with condition (iii) in part (b) holding
because the lR-modules Vλ are pairwise non-isomorphic, thanks to the second
point of the previous Proposition and the fact that F = F+ = E+ in this
case.

We want to understand what happens to the involved groups (and to their
intersection) extending scalars to C. Write, as usual,

Vλ ⊗R C ∼= V ⊗F R⊗R C ∼= Vσ ⊕ Vσ,

where σ, σ are the two extensions of λ to E. Let us work at the level of Lie
algebras. Choosing appropriate bases, we can assume that ω1

λ is the standard
Hermitian form, so the Lie algebra of U

(
V C
λ , ω

1
λ

)
is simply

u
(
V C
λ

)
=
{
M ∈ Mat (d,C) |M +MH = 0

}
.

Extending scalars to C we have an isomorphism

Mat (d,C)⊗R C → Mat (d,C)⊕Mat (d,C)

M ⊗ z 7→ (Mz,Mz),

that restricted to u becomes M⊗z 7→
(
Mz,−(Mz)t

)
, so that composing with

the projection on the first factor Mat (d,C) gives an isomorphism u ⊗R C ∼=
Mat (d,C) (more abstractly, we are simply saying that U is an R-form of GL).

Let ωσ (resp. ωσ) denote the skew-symmetric form induced by ω2
λ on

Vσ (resp. Vσ) through the above isomorphism. We claim that the image
of u ∩ sp

(
V C
λ , ω

2
λ

)
in gl(Vσ) is simply sp

(
V C
λ , ωσ

)
. Indeed, on the one hand

an element in the intersection u ∩ sp
(
V C
λ , ω

2
λ

)
has to preserve the form ω2

λ

induced on Vσ by the above isomorphism; on the other hand, any element B
in sp

(
V C
λ , ωσ

)
must come from an element A in u ⊗ C, and we only need to

show that this A preserves ω2
λ.

In order to do this, it is enough to show that B preserves both ωσ and
ωσ. Note that B acts via A on Vσ and via −At on Vσ; fixing bases, if ωσ is
represented by a skew-symmetric matrix J , then ωσ is represented by J , and
the implications

AtJ + JA = 0⇒ AHJ + JA = 0⇒ (−At)tJ + J
(
−At

)
= 0

show that −At preserves ωσ, so we are done.
To describe the action, simply note that Vσ is by definition the standard

representation of sp
(
V C
λ , ω

)
, and we also know that an element A in this

algebra acts as −At on Vσ, so Vσ is the contragradient representation. As the
standard representation is clearly self-dual, being symplectic by definition, the
two representations are in fact isomorphic to each other (and to the standard
one), as claimed.
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Remark 6.4.3. When F is a real quadratic field over Q and D is a quaternion
algebra over F , we see that lC is isomorphic to the product of 2 = [F : Q]

copies of sp2,C
∼= sl2, since (with the above notation) d = dim(A)

[F :Q] = 2.

Also note that the structure result we have just shown implies that L(A)
is reductive.

6.5 Varieties of Type I

Let (A, λ) denote a polarized, simple Abelian variety over C (resp. a number
field K). We give here a sufficient condition for the equality Hg(A) = L(A)
to hold for varieties of type I.

Theorem 6.5.1. Suppose A is of type I and let E be its endomorphism algebra
(a totally real number field in this case). Let d be the degree of E over Q and
suppose further that dim(A) = dh, where h is either 2 or an odd integer.

Then the rank of H is dim(A); in particular, Hg(A) equals L(A).

Proof. A is of type I, so h is semisimple: extend scalars to C and write hC ∼=∏t
i=1 hi, where each factor hi is a simple Lie algebra. In the `-adic case, we can

assume without loss of generality that ` splits completely in E (see Theorem
5.3.5).

Let Σ(E) be the set of embeddings σ : E ↪→ C.

Upon extension of scalars, the tautological representation of h on V be-
comes VC ∼=

∏
σ∈Σ(E) Vσ, where the Vσ’s are simple, pairwise non-isomorphic

h modules: we have

EndhC(VC) = End(V )h ⊗C ∼= E ⊗C,

and this last space equals CΣ(E) in the geometric case and E`⊗C ∼= (Q`)
[E:Q]⊗

C ∼= C[E:Q] in the `-adic one, so the claim follows from Schur’s lemma.

Notice that the Vσ’s coincide with those introduced in Section 1.1.4, so
each one of them is a symplectic representation of h. Write ψσ for the non-
degenerate, alternating form induced by ψ on Vσ and Vσ =

⊗t
j=1Wσ,j for the

decomposition of Vσ as exterior product of simple hj-modules.

We now want to show that this decomposition only has one non-trivial
factor and deduce its precise representation structure. A first important re-
mark is that

dimC Vσ =
dimC VC
[E : Q]

=
2 dim(A)

d
= 2h

is either 4 or twice an odd number.

Consider first the case h odd. For each σ, there is at least one index j such
that Wσ,j is non trivial; this representation is then minuscule by Corollary
6.2.5 (resp. Theorem 6.2.6) and, since Vσ is symplectic, it is either symplectic
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or orthogonal by Corollary 2.3.6. Thanks to Theorem 2.4.6 we know that any
self-dual, irreducible and minuscule representation is of even dimension: this
is clear for types Bl, Cl and Dl, and for Al follows from the fact that(

2r

r

)
=

(2r)!

r!r!
=

2r

r

(2r − 1)!

r!(r − 1)!
= 2

(
2r − 1

r

)

is even (at least for r ≥ 1). Then, for each σ, in the decomposition
⊗t

j=1Wσ,j

exactly one factor is non-trivial, for otherwise 2h = dim(Vσ) would be divisible
by 4.

If h = 2, then either we have exactly one non-trivial factor (of dimension
four, so that it is isomorphic to the standard representation of sp4), or exactly
two, each one of dimension 2: this cannot happen, since they would then be
isomorphic to the standard representation of sl2, and their product would be
orthogonal, while we know it to be symplectic. In any case, we deduce that for
each σ exactly one factor Wσ,j is non-trivial: this non-trivial Wσ,i must then
be symplectic, as Vσ is, and of dimension 2h; with this additional condition,
the table of minuscule weights shows that hi is the symplectic algebra sp2h,C

and Wσ,i is simply its standard representation (again, here we have to exclude
algebras of type Al: this is done by noticing that the possible dimensions for
irreducible, minuscule and symplectic representations of algebras of type Al

are of the form

(
4k + 2

2k + 1

)
, and these numbers are divisible by 4).

For each index i let Σ(i) = {σ ∈ Σ|hi acts non-trivially on Vσ}. On one
hand, since the representation of hC afforded by VC is faithful, we necessarily
have |Σ(i)| ≥ 1.

On the other hand, suppose by contradiction that for an index i we had
|Σ(i)| > 1. Let σ1, σ2 be two different elements of Σ(i). Then Vσ1

∼= Vσ2 as
hi-modules, hence Vσ1

∼= Vσ2 as h-modules (since the other simple factors of
h act trivially on Vσ1 , Vσ2), but this contradicts the previous remark that the
Vσ’s are pairwise non-isomorphic. It follows that |Σ(i)| = 1 for every i, hence
d = |Σ| =

∑t
i=1 |Σ(i)| = t. Let σi be the unique element of Σ(i) and let li be

the Lie subalgebra of gl (Vσi) given by the endomorphisms preserving ψ|Vσi .
From the above we see that the action of hC ∼=

∏t
i=1 hi on

⊕
i Vσi can

be described as follows: the simple factor hi of hC projects isomorphically
onto li, which in turn acts tautologically on Vσi . Since all the automorphisms
of li ∼= sp2h are inner, we are exactly in the situation of Lemma 3.3.1, so
hC ∼=

⊕d
i=1 sp2h. The rank of h is therefore d times the rank of sp2h and the

claim follows.

Finally, from the explicit description of L(A) (Prop. 6.9) we know that over
C its Lie algebra becomes isomorphic to spd2h, so the inclusion Hg(A) ⊆ L(A)
must be an equality.
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6.6 Varieties of Type II

We now extend the result of the previous section to varieties of type II; the
argument essentially carries through, with just a few minor modifications.

Let, as before, A be a simple polarized Abelian variety over C (resp. a
number field K) and D be its endomorphism algebra, whose center we denote
E. Let d = [E : Q].

Theorem 6.6.1. Suppose A is of type II and dim(A) = 2dh, where h is either
2 or an odd number.

Then the rank of H is dh and Hg(A) = L(A).

Proof. Keeping all of the notation from the previous proof, we write
∏t
i=1 hi

for the decomposition of hC in simple factors and Σ(E) for the set of embed-
dings σ : E ↪→ C.

Here again we can assume that ` splits completely in E; note that D` is
then a product of central simple algebras Dσ, each one of degree four over the
copy of Q` indexed by σ; over C, the algebras Dσ split and become isomorphic
to the standard 2× 2 matrix algebra.

The modules Vσ appearing in the decomposition VC ∼=
∏
σ∈Σ(E) Vσ are not

simple anymore: in fact,

EndhC(VC) = End(V ⊗C)hC = End(V )h ⊗C

∼= D ⊗C ∼= Mat (2,C)Σ(E) ,

so Schur’s lemma implies that each Vσ splits as W⊕2
σ for a certain simple

module Wσ.

To fix notations, write VC ∼=
⊕

σ

(
W

(1)
σ ⊕W (2)

σ

)
where each W

(i)
σ is irre-

ducible and W
(i)
σ1
∼= W

(j)
σ2 if and only if σ1 = σ2. The Vσ’s are again symplectic

representations of h, and we are going to show that

• each W
(i)
σ is a symplectic representation;

• the submodule W :=
⊕

σ

(
W

(1)
σ ⊕ (0)

)
⊂
⊕

σ

(
W

(1)
σ ⊕W (2)

σ

)
is faithful

as a representation of h.

The first claim follows easily: let ψσ be the non-degenerate, alternating

form induced by ψ on Vσ. Then the restriction of ψσ to W
(1)
σ is either zero

or non-degenerate (as W
(1)
σ is simple); in the second case we are done, and

in the first, the non-degeneracy of ψσ in Vσ identifies W
(1)
σ
∼= W

(2),∨
σ , so that

W
(1)
σ
∼= W

(2)
σ is at least self-dual. Now, if it were to be orthogonal, then clearly

both W
(1)
σ and W

(2)
σ would be orthogonal, and so would be their sum Vσ, which
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we know to be symplectic, contradiction. Therefore W
(1)
σ is symplectic and

we are done.

As for the second claim, simply observe that VC ∼= W⊕W , so W is faithful
if and only if VC is, and this is clearly the case.

Still along the lines of the previous proof, let W
(1)
σ =

⊗t
j=1Xσ,j be the

decomposition of W
(1)
σ as exterior product of simple hj modules. Note that

dimC

(
W

(1)
σ

)
= 1

2 dimC Vσ = 1
2

2 dim(A)
[E:Q] = 2h, so this is either 4 or twice an

odd number.
All the rest of the argument then carries through in the exact same way,

hence hC ∼=
⊕d

i=1 sp2h, the only difference being that the action on VC is given
by two copies of the representation we had in the case of varieties of type I.

To finish the proof we simply need to quote the result of Remark 6.4.3,
which - along with the above computation - ensures that the Lie algebras of
Hg(A) and L(A) become isomorphic upon extension of scalars to C, whence
the two groups coincide.



CHAPTER 7
On the Mumford-Tate

conjecture

We set out to prove results on the Hodge, Tate and Mumford-Tate conjec-
tures for particular classes of simple Abelian varieties that satisfy additional
requirements on the dimension g. In case g is a prime number we get, following
Ribet, a full proof of all the three conjectures.

We retain all of the notation introduced in 6.1

7.1 The action of CM fields

We start by describing important invariants associated to the action of CM
fields on Abelian varieties and by fixing our notation. Suppose E is a CM field
acting on a Abelian variety A defined over a field K (the complex numbers or
a number field) in such a way that 1 ∈ E acts as the identity, and let Σ(E) be
the set of embeddings of E in C. Let K be a fixed algebraic closure of K. Then
the Lie algebra of AK is both a K-module (thanks to the K-variety structure
on AK) and an E-module, with the two structures being compatible when
restricted to Q, so L := Lie

(
AK
)

acquires the structure of an E ⊗K-module.

Let m denote
2 dim(A)

[E : Q]
.

Now Galois theory implies that

E ⊗Q K
∼−→ K

Σ(E)

e⊗ z 7→ (σ 7→ z · σ(e))

107
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is an isomorphism; on the E-vector space L this isomorphism induces a K-
linear isomorphism

L ∼=
⊕

σ∈Σ(E)

Lσ,

where

Lσ = {l ∈ L|e · l = σ(e)l ∀e ∈ E} .

We set nσ := dimK Lσ, and observe that L is a free module over E ⊗K if
and only if for every σ we have nσ = nσ.

Definition 7.1.1. We say that a quadratic imaginary field k acts on A
with multiplicities {a, b} if the pair {nσ, nτ} just defined (for the only two
embeddings σ, τ of k in C) equals {a, b}.

We collect here a few particular cases of results of Shimura (cf. [Shi63]
and also Chapter 9 of [BL04]) that we will need in the next sections:

Proposition 7.1.2. The integers nσ have the following properties:

• Suppose E is an imaginary quadratic field. Then, if A is simple and
dimA ≥ 3, nσ and nτ are both non-zero.

• Suppose A is a simple fourfold of type IV. Then its endomorphism al-
gebra is automatically a field; if, furthermore, A is of type IV(2,1), then,
up to a choice of notation, (nσ1 , nτ1) = (2, 0) and (nσ2 , nτ2) = (1, 1).

• There exists no simple Abelian fourfold of type III(2).

An useful tool which will simplify some of the proofs that will follow is the
following inequality, due to Ribet ([Rib80], p.87):

Theorem 7.1.3. Suppose A is a simple Abelian variety defined over C of CM
type. Then

rank(h) ≥ log2(2g).

7.2 A theorem of Serre

We now state and prove a theorem, due to Serre (cf. Proposition 4 of [Ser67]),
that gives a sufficient condition in order for a reductive subgroup of GL to be
all of it.

Theorem 7.2.1. Let V be a finite-dimensional over Q and suppose given a
decomposition VC = VC(0)⊕ VC(1).

Let G be a subgroup of GL (W ). Suppose that
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1. G is reductive and connected;

2. the centralizer of G inside GL (E) is reduced to the homotheties;

3. for every x ∈ Gm,C, G contains the operator ρx := idVC(0)⊕x idVC(1).

Suppose furthermore that the dimensions of VC(0) and VC(1) are relatively
prime. Then G = GL (W ).

Remark 7.2.2. In the absolutely simple case, both the Mumford-Tate group
and G` satisfy the hypotheses of this theorem, the first with respect to the
Hodge decomposition and the second with respect to the Hodge-Tate one.

Proof. To simplify notation let W = VC,W0 = VC(0),W1 = VC(1) and n0 =
dimCW0, n1 = dimCW1.

As G is reductive we can write it as the almost-direct product G = Z(G)·S,
where S denotes the derived subgroup of G. Z(G) is clearly contained in the
centralizer ofG insideGL, so Z(G) is contained in the one-dimensional torus of
homotheties. If, by contradiction, it were finite, then G would be semi-simple,
hence contained in SL, which contradicts (3), since det(ρx) = xn1 does not
always equal one. This implies that Z(G) equals the torus of homotheties in
GL.

For every x, y ∈ Gm,C, the operator ρx,y = x idW0 ⊕y idW1 belongs to G,
since it can be written as x idW · (idW0 ⊕(y/x) idW1), and both factors belong
to G. This gives us a map of algebraic groups

Gm,C ×Gm,C → G

(x, y) 7→ ρx,y

whose image is a 2-dimensional torus which we call Θ.
Θ also contains the 1-dimensional torus

Ψ : Gm,C → G

x 7→ ρxn1 ,x−n0 ,

and it is easy to check that det Ψ(x) = xn1n0x−n0n1 = 1, so Ψ(x) ∈ S.
We now want to show that S is in fact simple: suppose, on the contrary,

the existence of a nontrivial decomposition S ∼= S1×S2
N , where both S1 and

S2 are not finite and N is a finite subgroup of the center of S1 × S2. Such
a decomposition induces a structure of (S1 × S2)-module on W , and we have
a corresponding decomposition W ∼= W ′ ⊗W ′′, where W ′ is module over S1

and W ′′ over S2. Let Ξ be the connected component of the identity of the
inverse image of Ψ (Gm,C) inside S1×S2. We have three different actions of Ξ
on W , given by the projections of Ξ on S1, S2 and G. Fix an isomorphism σ :
Ξ→ Gm. Let χ1, χ2, χ be the corresponding characters, thought of as Laurent
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polynomials in σ with non-negative integer coefficients. We have χ = χ1χ2,
and on the other hand the description of the action of Ξ/N on W implies
χ = n0σ

a + n1σ
b for certain integers a, b. Also, note that a 6= b, for otherwise

Ξ/N would act on W through homotheties, which it does not. It follows that
χ1 divides n0σ

a + n1σ
b as a polynomial with natural coefficients, but this

last polynomial is essentially irreducible: the only possible factorizations are
those of the form dσc ·

(
n0
d σ

a−c + n1
d σ

b−c) with d a natural number and c an
integer. This follows at once from the fact that if g1, g2 are two polynomials
with natural coefficients and neither is a monomial, then g1g2 has at least
three non-zero coefficients. The hypothesis (n0, n1) = 1 then forces d = 1, so
one of χ1, χ2 is of the form σc. Assume without loss of generality that it is
χ1. Then the image of S1 inside S acts trivially on W , contradicting the fact
that W is clearly a faithful S-module.

We have thus shown that S is simple.
Let now h = n0 + n1. Ψ induces a map from µh to Z(G), since for every

h-th root of unity µ the operator Ψ(µ) = ρµn1 ,µ−n0 = ρµn1 ,µh−n0 = ρµn1 ,µn1
is a homothety. Moreover, the restriction of Ψ to µh is injective, since the
hypothesis (n0, n1) = 1 implies that we can recover µ from µn1 , µ−n0 , hence
µ from Ψ(µ). This implies that µh is at the same time a subgroup of SL, of
the homotheties and of G, so it is a subgroup of the center of S.

We are then left with proving the following: if S is a simple algebraic group
such that h divides |Z(S)|, ρ : S → GL(W ) is a nontrivial representation and
dim(W ) = h, then ρ induces an isomorphism S → SL(W ).

This can be done most easily using the classification of algebraic groups.
Suppose first that S is of type An. Then h|(n+ 1), so

n+ 1 ≥ h⇒ dim(S) ≥ dim(SL(W )),

which forces ρ (whose image has dimension equal to the dimension of S) to
be surjective, and hence an isomorphism, since SL(W ) is simply connected.

Suppose on the contrary that S is not of type An. Then the classification
of algebraic groups shows that the center of S has at most 4 elements, whence
h ≤ 4.

The possibility h = 1 is excluded, since in this case GL(W ) is a torus (so
there is no nontrivial representation of the simple group S in GL(W )).

If h = 2, then dim(S) = dim(SL2) = 3, and every algebraic group of
dimension 3 is isomorphic to SL2 (since we are working over an algebraically
closed field).

If h = 3, then S ∼= E6, which is of dimension 78, so it does not admit a
map towards SL3 (of dimension 8) with at most finite kernel.

Finally, if h = 4, then S is of type Dn with n ≥ 4, but all of these groups
have a dimension much bigger than that of SL4, so the same argument as
above applies and this case cannot happen, either.
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7.3 The case of prime dimension

With the results we have established so far it is now easy to prove the following
theorem (which is a minor modification of Theorem 3 in [Rib83]):

Theorem 7.3.1. Suppose A is a simple Abelian variety with End0(A) = E,
an imaginary quadratic field. Let nσ, nτ be the multiplicities of the action of
E on A. Then, if nσ and nτ are relatively prime, Hg(A) = L(A) and the
Mumford-Tate conjecture holds.

Proof. We show, in fact, that we can compute both Hg(A) and its `-adic
counterpart. We treat the geometric and `-adic case at the same time. Our
purpose is to show that g` = Q` · id⊕u(V`/E`) (and, analogously, that g :=
Lie(MT (A)) coincides with Q · id⊕u(V/E)). Thanks to Theorem 5.3.5 we
know that the rank of g` is independent of `, so we can take ` to a prime that
splits completely in E in two places of good reduction for A.

From now on, we take the general notation described above.
The above assumption on ` in the `-adic setting and the fact that E is

totally imaginary in the geometric case imply V ∼= Vσ ⊕ Vτ where Vσ and Vτ
are absolutely irreducible g-modules: as usual, we can compute

End (V ⊗C)g ∼= End (V )g ⊗C ∼= E ⊗C ∼= C2,

so that Schur’s lemma ensures that Vσ and Vτ are absolutely irreducible (and
non-isomorphic). Combining this decomposition (with respect to the action
of E) and the Hodge (resp. Hodge-Tate) decomposition of VC we get a finer
splitting

VC ∼= (Vσ(0)⊕ Vτ (0))⊕ (Vσ(1)⊕ Vτ (1)) ,

where
dimVσ(0) = nσ,dimVτ (0) = nτ

and hence dimVσ(1) = nτ .
Consider now the projection of g to gl (Vσ). The space V` admits a

Hodge-Tate decomposition with n0 = nσ, n1 = nτ , so Theorem 7.2.1 applies:
(n0, n1) = 1 by hypothesis, Vσ is absolutely irreducible (so the centralizer of
this projection is reduced to the homotheties) and all the involved groups are
reductive and connected because of our assumptions and Falting’s Theorem
5.3.3.

The above proves

rank (gss) ≥ rank (gl (Vσ)ss) = dimVσ − 1 = n0 + n1 − 1.

Now since g ⊆ Q · id⊕u (V/E) and

rank (u (V/E)ss) = rank (su (V/E)) =
1

2
dimQ V − 1 = n0 + n1 − 1,
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we only need to show that rank
(
gab
)
≥ 2.

In order to do this, simply consider the cocharacter

µ : Gm,C → GL (VC)

x 7→

(
id

x

)
,

which we know to factor through the (geometric, resp. `-adic) Mumford-Tate
group, and compose with detE : GC → TE,C ∼= Gm ×Gm. Then

det(µ(x)) =
(
det
(
µ(x)|VC,σ

)
, det

(
µ(x)|VC,τ

))
=
(
xdimVC,σ(1), xdimVC,τ (1)

)
= (xnτ , xnσ)

is not contained in the diagonal of Gm × Gm; now clearly the image of the
determinant map contains the diagonal (as the homotheties belong to MT ,
resp. G`), so the image of detE contains at least a torus of rank 2. It follows
that the rank of the Abelian part of g is at least two, and we are done.

Combining all we know we finally get the following Theorem:

Theorem 7.3.2. Let A be a simple Abelian variety of prime dimension p,
defined over a number field K. Then the Hodge, Tate and Mumford-Tate
conjectures hold for A.

Remark 7.3.3. The theorem in itself is nothing new and it is essentially due
to Ribet ([Rib83], Theorems 1,2 and 3), although he is only interested in the
Hodge setting and makes no mention of the Mumford-Tate conjecture.

The validity of the Mumford-Tate conjecture for A of type I is a particular
case of Theorem C in [BGK03], which in turn follows at once from the results
of Section 6.5; furthermore, in case the endomorphism algebra is simply Z,
this was already known to Serre ([Ser86]).

Finally, as already remarked, the Mumford-Tate conjecture is known in
full generality for varieties of CM type.

Proof. Because of the Albert classification we only have four possibilities for
End0(A), namely,

• Type I(1), D = Q: in this case, as it is easy to check, Pink’s Theorem
applies, so MT (A) ∼= CSp2g,Q and G`(A) ∼= CSp2g,Q` . Theorem 5.1.13
then concludes the proof for the Hodge conjecture and its `-adic analogue
implies the Tate conjecture for both A and all of its powers.
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• Type I(p), D = E is a totally real field of degree p over Q: in this
case the result of Section 6.5 applies (in a particularly simple form), so
Hg(A) = L(A) and we conclude as before.

• Type IV(1, 1), D = k is a totally imaginary quadratic field over Q: the
claim follows immediately from the above Theorem 7.3.1.

• Type IV(p, 1), D = E is a CM field of degree 2p over Q: we know that
the Mumford-Tate conjecture holds for CM varieties, so it is enough to
work out the geometric case. Being in the CM case, we are dealing with
algebraic tori by Proposition 3.1.10, so we only need to compare ranks.
Introduce, as usual, algebraic tori

TE := ResE/QGm, TE0 := ResE0/QGm,

and the normal closure L of any image of E in C.

We know that the Hodge group H is a subgroup (subtorus) of the kernel
UE of the norm mapNE/E0

: TE → TE0 , so its rank is at most 1
2 dimTE =

p, and what we need to show is rank(H) ≥ p. We distinguish two cases,
according to whether the dimension of A is 2 or an odd prime.

If the dimension is 2, we checked in Section 4.2 that Hg(A) = L(A), and
once again we conclude by Theorem 5.1.13.

Note that another possible approach is to use Ribet’s inequality (The-
orem 7.1.3), that immediately yields the desired result:

rk(h) ≥ log2(2 dim(A)) = 2.

If p is odd, consider the character group X∗(H), which is a quotient of
X∗ (UE). Identifying V ∼= E as E-modules, it is clear that the characters
of TE appearing in the representation V are simply the embeddings
σ : E ↪→ L. The H-module V is still multiplicity-free (since End(VC) =
E ⊗ C is a direct sum of copies of C), so the images of the various σ’s
in the quotient X∗(H) are all distinct.

Let now ρ : Gal
(
Q/Q

)
→ Aut (X∗(H)) be the morphism describing the

action of the absolute Galois group of Q on the set of embeddings, K be
its kernel and C its image. Clearly, if an element of Gal

(
Q/Q

)
fixes L,

it also fixes X∗(H), and by the above remark the converse is also true,
hence K = Gal

(
Q/L

)
and C = Gal (L/Q). It follows that |C| = [L : Q]

is divisible by [E0 : Q] = p, so C contains an element g of exact order p.

The action of this g on Y = X∗(H)⊗Q makes the latter into a module
over Q[x]/(xp−1) ∼= Q (ζp)⊕Q, so we get a corresponding decomposition
Y = Y1⊕Y2, where Y1 is a Q (ζp)-vector space and Y2 is a Q-vector space.
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Since we already know that g acts nontrivially on Y , Y1 is nonzero, and
hence its dimension over Q is at least dimQQ (ζp) = p − 1. In order to
show that rank (X∗(H)) ≥ p we only need to show dimQ(Y ) ≥ p, so
it suffices to prove Y2 6= 0. In turn, this boils down to describing an
element invariant under the action of g: take any embedding σ : E ↪→ C
and consider

σ̃ := σ + g · σ + . . .+ gp−1 · σ,

which is clearly an invariant for the action of g. All we need to show
now is σ̃ 6= 0.

Consider the natural pairing X∗(H)×X∗(H)→ Z.

X∗(H) is a Gal
(
Q/Q

)
-submodule of X∗(TE), which is again the free

Abelian group on the embeddings σ : E → C (although with a different
structure). Let Σ be the set of embeddings E ↪→ C that appear as
characters in the representation H(1,0)(A,C) of TE : then

∑
σ∈Σ σ is an

element of X∗(MT (A)).

To see this, simply consider the usual cocharacter µ : Gm,C →MT (A)C
that defines the Mumford-Tate group, and observe that it is identified to
the sum of those embedding appearing in H(1,0)(A,C). In particular, for
every pair (σ, σ̄), exactly one appears in this representation (since the
other acts nontrivially on H(0,1)(A,C), so the claim follows by counting
dimensions). Moreover, since X∗(H) is the subgroup of elements of
X∗(MT (A)) the sum of whose coefficients is zero, we see that

χ :=
∑
σ∈Σ

(σ − σ) ∈ X∗(H),

using the fact that the cocharacter group X∗(MT (A)) is stable under
complex conjugation. As the coefficient of each embedding σ in χ is ±1,
the natural pairing 〈χ, σ̃〉 is a sum of p terms, each of which is ±1, hence
it is an odd integer. In particular, it is not zero, so σ̃ 6= 0 and we are
done.



CHAPTER 8
Simple Abelian fourfolds

To further our investigation of the Hodge and Tate conjectures for Abelian
varieties we now move to simple Abelian fourfolds and try to connect the
existence of exceptional (Hodge or Tate) classes on A with certain arithmetic
properties of its endomorphism algebra.

Note that the many theorems of Chapter 5 assure us that the Hodge and
Tate classes in H2 and H6 are in the algebra generated by divisor classes, so
from now on we restrict our attention to H4.

We keep using the notation from Chapter 6, but in order to describe the
criterion proved in [MZ95] we shall need one more definition:

Definition 8.0.4. Let A be an Abelian variety. A sub-algebra B of End0(A)
is said to be stable under all Rosati involutions if for every choice of a
polarization ϕ on A we have iϕ(B) = B, where iϕ is the Rosati involution
induced by ϕ.

We are now ready to state and prove the main theorem of [MZ95].

Theorem 8.0.5. Let A be a simple Abelian fourfold over C (resp. a number
field K). Then A supports exceptional Hodge (resp. Tate) classes if and only
if the following hold:

• End0(A) (resp. End0(AK)) contains an imaginary quadratic field k such
that k is stable under all Rosati involutions;

• Lie(A) becomes a free (k ⊗Q C)-module (resp. Lie(AK) becomes a free(
k ⊗Q K

)
-module).

115
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8.1 Exceptional classes: sufficient condition

The ‘if’ part the theorem actually holds in arbitrary dimension, so for the
moment we drop the assumption dim(A) = 4.

We recast the previous Theorem in a slightly different form:

Theorem 8.1.1. Let A be a simple Abelian variety over C (resp. a number
field K). Assume that either of the following holds:

• A is of type III;

• End0(A) (resp. End0(AK)) is a CM-field E containing a CM-subfield F
such that nσ = nσ′ for every σ ∈ Σ(F ).

Then A supports exceptional Hodge (resp. Tate) classes.

As a first step we are going to show that the above assumptions are in
fact equivalent to the original assumptions in Theorem 8.0.5. We shall need
a lemma:

Lemma 8.1.2. Let A be a polarized Abelian variety over C (resp. a number
field K) and suppose E is a CM subfield of End0(A) (resp. End0

(
AK
)
). Let

furthermore V = H1 (A,Q) and V` = V ⊗Q`.

Then, with the above notation, nσ = nσ for every embedding σ : E ↪→ C if
and only if h ⊆ su (V/E) (resp. h` ⊆ su (V`/E`)).

Proof. We start with the complex case. Write

Lie(A)⊗R C ∼= V ⊗Q C ∼=
⊕

σ∈Σ(E)

Hσ.

From the Hodge decomposition of V we get a decomposition of every
space Hσ, given by Hσ = Hσ ∩ (V ⊗Q C) = Hσ ∩

(
V (−1,0) ⊕ V (0,−1)

)
=:

H
(−1,0)
σ ⊕H(0,−1)

σ . Let aσ := dim
(
H

(−1,0)
σ

)
, bσ = dim

(
H

(0,−1)
σ

)
. As complex

conjugation exchanges σ, σ and Hσ, Hσ, we see that H
(−1,0)
σ ⊕H(0,−1)

σ (being
stable under complex conjugation) comes from a real vector space that can
be identified with the space Lσ introduced at the beginning of Chapter 7. In
particular, aσ = nσ, bσ = nσ̄, so we have the equivalences

Lie(A) becomes a free module over
E ⊗Q C⇐⇒ nσ = nσ ∀σ ∈ Σ(E)⇐⇒ aσ = bσ ∀σ ∈ Σ(E).

On the other hand, we always have the inclusion h ⊆ u (V/E), so we just
need compute the trace of an endomorphism belonging to the Hodge algebra.
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To this end, notice that (letting m = dimE(V ) = 2 dim(A)
[E:Q] )(

m∧
E

V

)
⊗Q C ∼=

m∧
E⊗QC

(V ⊗Q C) ∼=
m∧

E⊗QC

⊕
σ∈Σ(E)

(
H(−1,0)
σ ⊕H(0,−1)

σ

)
∼=

⊕
σ∈Σ(E)

m∧
E

(
H(−1,0)
σ ⊕H(0,−1)

σ

)
.

Expanding the internal exterior power (and using m = aσ + bσ) we then
get ⊕

σ∈Σ(E)

(
H(−1,0)
σ

)⊕aσ
⊗
(
H(0,−1)
σ

)⊕bσ
,

which is a Hodge structure with weights (aσ, bσ)σ∈Σ(E). Now an element h ∈ h
acts on

∧m
E V as the multiplication by its trace as an E-linear endomorphism

of V , so its trace is zero if and only if its action is trivial, which in turn
happens exactly when all the pairs (aσ, bσ) satisfy aσ = bσ. Combining this
last remark with the above chain of equivalences we get the desired result.

If A is defined over a number field K, fix an embedding K ↪→ C and
identify Σ(E) = Hom(E,K) with Hom(E,C).

If E acts on A in such a way that nσ = nσ, then the same is true for its
action on AC; it follows (using Deligne’s result 5.3.6) that for any prime `

h(AC) ⊆ su(V/E)⇒ h` ⊆ h(AC)⊗Q` = su(V`/E`).

Conversely, suppose h` ⊆ suE`(V`, ψ`). Fix a place w of K above ` and a
place w of K above w, and use Theorem 5.2.1 to get a Hodge-Tate decom-
position VC ∼= V (0)⊕ V (1). The assumption means that Gal

(
K/K

)
acts on∧m

E`
V` via the character χm/2 , so this last module is purely of type

(
m
2 ,

m
2

)
.

Comparing with the action of E` on the Hodge-Tate decomposition

VC ∼=
⊕
σ∈Σ

VC,σ ∼=
⊕
σ∈Σ

(VC,σ(0)⊕ VC,σ(1))

we get, as before, nσ = dimVC,σ(0), whence the same proof as above yields m∧
E`

V`

⊗Q` C ∼=
m∧

E`⊗Q`C

VC ∼=
⊕
σ∈Σ

(
m∧
C

VC,σ

)

∼=
⊕
σ∈Σ

(
nσ∧
VC,σ(0)⊗

m−nσ∧
VC,σ(1)

)
,

which is purely of type
(
m
2 ,

m
2

)
if and only if nσ = nσ′ = m/2 for every

embedding σ.
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Remark 8.1.3. It is worth noting that we have also proved aσ+aσ = aσ+bσ =
m = 2 dim(A)

[E:Q] . We shall need this result again.

We can now resume the reduction of the ’if’ part of Theorem 8.0.5 to
Theorem 8.1.1. Observe that if f 7→ f † is one Rosati involution on End0(A),
then every other such involution is of the form f 7→ e−1f †e for a certain e
with e = e† (thanks to the description of polarizations over an algebraically
closed field).

Suppose F is a CM-field contained in End0(A), and fix a polarization
inducing complex conjugation on F . If a Rosati involution stabilizes F , then
it acts as complex conjugation (since this is the only positive involution over
a CM field); it follows that F is stable under all Rosati involutions if and
only if for every e with e = e† we have e−1f †e = f †. As f ranges through
F , so does f †, hence the previous condition is equivalent to e−1fe = f for
every †-symmetric e in E and for every f in F , so F has to commute with
the algebra S generated by the †-symmetric elements of End0(A). Extending
scalars to R it is easy to see that for varieties of type II this algebra coincides
with the full endomorphism algebra, while for type III S is simply the center
of End0(A).

Depending on the type of A in the Albert classification we then have the
following cases:

Type I The endomorphism algebra of A does not contain any imaginary quad-
ratic field, so the conditions in the two formulations of the theorem are
trivially equivalent.

Type II As remarked above, an element f of an imaginary quadratic field F
stable under all Rosati involutions must lie in the center of End0(A),
which is real, so for varieties of Type II there never exists a quadratic
imaginary field stable under all Rosati involutions.

Type III In this case, being stable for one Rosati involution is equivalent to be-
ing stable for any Rosati involution; if k is an imaginary quadratic field
contained in End0(A) (and clearly there always is such a field) we can
choose a polarization that induces complex conjugation on k, so k is
stable under at least one Rosati involution, hence under all Rosati invol-
utions. Moreover, the above Lemma 8.1.2 says that the condition about
Lie(A) becoming a free (E ⊗ C)-module is always met for varieties of
type III: indeed, it is equivalent to h ⊆ su (V/E), but this follows from
h ⊆ u (V/E) by semisimplicity of h.

Type IV In this case, as End0(A) is commutative, stability with respect to one
Rosati involution is equivalent to stability under all Rosati involutions.
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The above analysis reduces the ’if’ part in the main result to Theorem
8.1.1. Before attacking the proof of the theorem itself we establish one more
lemma:

Lemma 8.1.4. Let E be a number field and V be a finite-dimensional E-vector
space. Then, for every m,

∧m
E V is, in a natural way, a direct summand of∧m

Q V .

Proof. By the universal property of
∧m

Q V we have a natural map

m∧
Q
V �

m∧
E

V ;

similarly, replacing V with V ∗, we have a surjective map
∧m

Q (V ∗) �
∧m
E (V ∗).

As it is well-known, exterior powers commute with taking duals, so we can

consider the second map as a surjection
(∧m

Q V
)∗

� (
∧m
E V )∗, and this clearly

gives rise to an injection
∧m
E V ↪→

∧m
Q V . Using bases it is not difficult to check

that the two maps are one the inverse of the other.

An example by Mumford (that can be found in [Poh68]), further clarified
by Weil in [Wei80], brings us to consider a particular family of cohomology
classes on an Abelian variety. We give the following

Definition 8.1.5. Let A be an Abelian variety of dimension g, defined over
K (the complex numbers or a number field). Suppose K is large enough, so
that every endomorphism of A is defined over K; furthermore, let E be a field,
ν : E ↪→ End0 (A) be a ring injection and m = 2 dim(A)

[E:Q] .

The space of E-Weil classes of A is

WE(A) =
m∧
E

H1 (A,Q)

in the complex case, and

W`,E(A) =
m∧

E⊗Q`

H1
ét

(
AK ,Q`

)
in the `-adic case.

In case A is a fourfold, we define

W (A) =
∑
k

(
4∧
k

H1 (A,Q)

)
,
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where the sum runs over all imaginary quadratic subfields of End0(A) acting
on A with multiplicities (nσ, nτ ) = (2, 2).

Analogously, if A is a fourfold defined over a number field K, for a fixed
prime ` we define

W`(A) =
∑
k

 4∧
k⊗Q`

H1
ét

(
AK ,Q`

) .

We will often refer to W (A),W`(A) simply as ‘the spaces of Weil classes
on A’.

Remark 8.1.6. Note that the above definition is not completely standard, but
will be very useful in our case.

Let A be a simple fourfold and k be an imaginary quadratic field as in
the above definition: it follows from Lemma 8.1.2 that the Hodge Lie algebra
(resp. h`) acts trivially on W (A) (resp. W`), so these are in fact Hodge (resp.
Tate) classes, and it is a meaningful question to ask whether or not they are
exceptional.

The Weil classes will in fact turn out to be the only exceptional classes
that can appear on simple Abelian fourfolds. We state this fact as a theorem,
which we will verify alongside the ’only if’ part of Theorem 8.0.5.

Theorem 8.1.7. Let A be a simple Abelian variety of dimension 4 over C
(resp. a number field K). Then B2(A) = D2(A) + W (A) (resp. T 2

` (A) =
D2
` (A) + W`(A)).

We are now ready to prove the ‘if’ part of the main theorem:

Proof. (Theorem 8.1.1) We start by showing that the assumptions imply the
existence of two CM-subfields F1 ⊆ F2 ⊆ End0(A) =: D such that

• h ⊆ su (V/F1);

• F2 ⊇
{
e ∈ End0(A)|e† = e

}
.

We distinguish two cases:

• if A is of type III, then D is a quaternion algebra over a totally real field
E. Choose a quadratic extension F/E that splits D. Then

F ⊗Q R ⊆ D ⊗Q R =

[E:Q]∏
i=1

H,

so F ⊗Q R must be a product of copies of C and F is a CM-field.

Take F1 = F2 = F : then on one hand h ⊆ su (V/D) ⊆ su (V/F1), and
on the other hand F2 ⊇ E = F+

2 .
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• if A is of type IV, take a CM quadratic field k such that Lie(A) becomes
a free module over k ⊗ C. Then Lemma 8.1.2 implies that we can take
F1 = k, and clearly we can take F2 = D.

Lemma 8.1.8. In the situation of the Theorem, the Lie algebras u (V/F1)
and u (V/F2) have the same rank.

Proof. Note that u (V/Fi) is the Lie algebra of ResFi/Q (u(V, ψ)), so

u(V/Fi)Q
∼= (u(V/Fi))Q

∼=
(
uFi (V )[Fi:Q]

)
Q
.

The rank of uFi (V ) is 1
2 dimFi(V ) = 1

2
dimQ V
[Fi:Q] = 2 dim(A)

2[Fi:Q] , hence the rank of

u(V/Fi) is

rk
(
u(V/Fi)Q

)
= rk

(
uFi (V )[Fi:Q]

)
= [Fi : Q]

2 dim(A)

2[Fi : Q]
= dim(A),

independently of i.

Let V = H1 (A,Q) and m = dimF1 V =
2 dim(A)

[F1 : Q]
. Consider the space L

of F1-Weil classes on A, namely

L :=
m∧
F1

H1 (A,Q) .

L clearly has dimension one over F1, so it is not the zero subspace. On
the other hand, we are going to show that every element in L (except for 0)
is an exceptional Hodge class.

• L consists of Hodge classes: to check that something is a Hodge class
we only need to show that it is fixed by the action of the Hodge group.
Note here that, as F1 ⊆ End0(A), the elements of F1 commute with the
action of the Hodge group, so in particular the Hodge group preserves
the structure of F1-vector space on V .

An element h ∈ h acts on L as −trF1(h), the trace of h thought of as
a F1-endomorphism of V : to see this, simply note that an element g
of the Hodge group acts on H1 (A,Q) = H1 (A,Q)∗ through g−1, so it
acts on the one-dimensional space L through detF1

(
g−1
)

= detF1(g)−1

(essentially by the very definition of the determinant in terms of exterior
powers), so by differentiation the Lie algebra acts through −trF1(g). By
construction, though, h belongs to su (V/F1), all of whose elements have
trace zero, so the Hodge Lie algebra acts trivially on L and every element
of L is a Hodge class.
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• All the elements of L are exceptional : we start by showing that the
action of u (V/F2) is trivial on divisor classes (and hence on the ring
they generate).

To this end, start by representing a divisor class as an alternating form
δ(v, w) = ϕ(ev, w) for a certain †-symmetric e. Thanks to Propositions
3.4.3 and 3.4.1 we can write

δ(v, w) = ϕ(ev, w) = trF2/Q (ψ(ev, w))

for a certain †-symmetric e and an F2-bilinear form ψ. By construction,
e = e† implies e ∈ F2, so, by F2-bilinearity we get

δ(v, w) = trF2/Q (eψ(v, w)) ,

whence the action of h ∈ u (V/F2) on δ is given by

h · δ(v, w) = δ(hv,w) + δ(v, hw) = trF2/Q (e (ψ(hv,w) + ψ(v, hw))) ,

and since ψ is h-invariant by definition we get

(ψ(hv,w) + ψ(v, hw)) = 0⇒ h · δ(v, w) = 0,

so that δ is h-invariant, too.

Suppose now that ∆ lies in the intersection L ∩ D•(A). For every h ∈
u (V/F2) ⊆ u(V/F1) we then have

0 = h ·∆ = −trF1(h)∆,

so, if there is at least one such ∆ that is non-trivial, we get trF1(h) = 0
for every h ∈ u (V/F2) ⊆ u (V/F1), hence u (V/F2) ⊆ su (V/F1). But
this is absurd, since

rank (su (V/F1)) < rank (u (V/F1)) = rank (u (V/F2)) ,

where the last equality holds by Lemma 8.1.8. This contradiction shows
that D• and L have trivial intersection, so every non-zero class in L is
exceptional.

Finally, consider the case where A is defined over a number field K. Fix
an embedding τ : K ↪→ C a consider the comparison isomorphism

H1(Aτ ,Q)⊗Q`
∼= V`(A).

As h` ⊆ h ⊗ Q`, the image in V`(A) of a Hodge class is a Tate class;
moreover, from D•(A)⊗Q`

∼= D•` (A) it follows that it is an exceptional Tate
class.
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8.2 Exceptional classes: necessary condition

We break down the proof of the other implication in Theorem 8.0.5 in steps,
one for each type in the Albert classification.

8.2.1 Type I

The endomorphism algebra of A is a totally real field E of degree d|4 over Q.
Two cases present themselves: d = 1 or d > 1.

In the second case, the results of Section 6.5 apply (since dim(A)/d ≤ 2),
so the Hodge group of A coincides with L(A) and Theorem 5.1.13 shows that
the Hodge conjecture is true not only for A, but for its powers as well. Since
we have analogous results also in the `-adic setting, the same exact line of
reasoning yields the Tate conjecture for A and all of its powers.

On the other hand, if d = 1, a slightly different method must be used: let
Q be a fixed algebraic closure of Q (note that in the `-adic case we are not
taking the completion). Extending scalars to Q we get

EndhQ
(VQ) = End(V )h ⊗Q Q ∼= Q⊗Q Q ∼= Q,

so V is an absolutely irreducible representation of Hg(A), and moreover h
is semisimple, since A is of type I. Suppose hQ is simple. Then VQ (as a
hQ-module) is faithful, irreducible, 8-dimensional, symplectic and minuscule:
Theorem 2.4.6 implies that hQ

∼= sp8,Q, so it is immediate to check that H
must coincide with the Lefschetz group and the Hodge and Tate conjecture
hold. If, on the other hand, hQ is not simple, write h1 × · · · × hl for its

decomposition in simple factors and VQ
∼= �l

i=1Wi for the corresponding de-
composition of VQ. The representation is faithful, so for each i = 1, · · · , l we
have dim(Wi) > 1; on the other hand, the dimension of each Wi divides 8, so -
since we are assuming that there are at least 2 irreducible factors - one among
the Wi’s (say W1) is 2-dimensional. By faithfulness, h1 ↪→ sl(W1) ∼= sl2,Q,
which in turn implies both h1

∼= sl2,Q and W1
∼= Std, the standard representa-

tion of sl2,Q. The remaining factors W := W2 � · · ·�Wl form a 4-dimensional
vector space on which h2×· · ·×hl acts faithfully and preserving an orthogonal
form (since the tensor product of W with W1, which is a symplectic repres-
entation, must again yield a symplectic representation): by definition, this
action factors through the standard representation of so4,Q

∼= sl2,Q × sl2,Q.
This forces l = 2 or 3, and - if we had l = 2 - the representation W would be
irreducible, orthogonal and minuscule, which is impossible for sl2,Q, so l = 3,
and VQ

∼= Std�Std�Std (the representations of sl2 are classified by their
dimension, and we have just shown that we have three irreducible factors of
dimension 2).
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We now extend scalars to C and remark that in order to show that the
Hodge (resp. Tate) conjecture holds for A it suffices to prove that the spaces

H4 (A,C)hC (geometric case),

(
4∧
V ∗
C

)hC

(`-adic case)

are one-dimensional. This is now a matter of explicit computations: we can
reduce to the second case by noticing that

H4 (A,C)hC ∼=

(
4∧
V ∗C

)hC

,

and we know the possibilities for hC and for its action on VC: either hC is
sp8,C acting through its standard representation, or hC is sl32,C acting through

Std�3 (these follow immediately from our computations over Q by extending
scalars).

Let us do the explicit computations for the first case: the standard rep-
resentation V ∗ ∼= V is then defined by the highest weight ω1 (cf. the table of
minuscule weights). It is convenient to embed the root system in R4, taking as
roots the vectors {±ei ± ej , 2ei}1≤i,j≤4, where ei denotes the canonical base of

R4. With this description, it is apparent that the Weyl group is the semi-direct
product (Z/2Z)4 oS4, where the factors act on the coordinates (respectively)
by changing signs and by permutations. As the weight is minuscule, all the
other weights appearing in the standard representation can be obtained from
ω1 = e4 as Weyl-conjugates, so we immediately see that the set of weights
of the standard representation is {±ei}i=1,··· ,4. Consequently, the weights in∧4 V are of the form w = w1 + w2 + w3 + w4, where the wi’s are pairwise
distinct weights of the standard representation. Depending on whether or not
we have wi = −wj for certain pairs of indices we get:

• a set X1 of weights of the form ±e1± e2± e3± e4, each with multiplicity
one, for a total of 16 weights, all conjugated under the Weyl group;

• two orbits (under the Weyl group) X1
2 , X

2
2 of weights of the form ±ei±ej

with i 6= j, each comprising 24 elements;

• the weight w = 0 with multiplicity six.

Weyl’s dimension formula allows us to compute the dimension of the rep-
resentations associated to the highest weights e1 + e2 + e3 + e4 and e1 + e2,
that turn out to be 42 and 27 respectively. As the set of weights of an irre-
ducible representation is stable under the action of the Weyl group, we see
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that the only possibility for the (multi)set of weights of V (e1 + e2 + e3 + e4)
is X1 ∪X1

2 ∪ 2 {0}, and similarly for V (e1 + e2) is X2
2 ∪ 3 {0}; it follows that

Λ4(Std) ∼= V (e1 + e2 + e3 + e4)⊕ V (e1 + e2)⊕ V (0),

so the space of h-invariants in Λ4(Std) is of dimension one, as claimed.

If hC ∼= sl2 × sl2 × sl2, similar computations allow us to conclude

dim

(
4∧
V ∗C

)hC

= 1,

so the Hodge and Tate conjectures hold for A, even though Theorem 5.1.13
does not apply.

Remark 8.2.1. An example by Mumford ([Mum69]) shows that there exist
simple Abelian fourfolds with endomorphism algebra Z and Hodge group iso-
morphic to a Q-form of sl32.

Moreover, note that the Mumford-Tate conjecture is not known for simple
fourfolds of type I(1) (although the Hodge and Tate conjectures both follow
from the above arguments): more precisely, it has not yet been proven that
if End0(A) is Z and the Hodge group is the full symplectic group Sp(4), then
h` is sp4,Q` .

When the Hodge group is a Q-form of SL3
2, on the other hand, Deligne’s

theorem 5.3.6 shows that h` is forced to be a Q`-form of sl32.

8.2.2 Type II

In this case e = [E : Q] is either 1 or 2, and in both cases we have dim(A)
e = 2h

with h ≤ 2, so our general results (Section 6.6) apply and yield that the
Hodge group of A satisfies the hypothesis of Theorem 5.1.13, whence the
Hodge conjecture is true for A and all of its powers.

Analogously, the same results apply in the `-adic setting and the Tate
conjecture holds for both A and its powers.

8.2.2.1 A simple proof of a special case

We sketch a different proof of the above result in the case e = 2. Essentially,
all we need to do is describe u (V/D) and calculate its dimension as Q-vector
space. Since both V and D are of dimension 8 over Q and every D-module is
free, we conclude that V ∼= D as D-modules.

Let ρ be an automorphism of V = D commuting with the left action of D.
Then ϕ(d) = ϕ(d · 1) = dϕ(1), so ϕ is the right multiplication by ϕ(1) ∈ D.
For d = ϕ(1) denote ρd this morphism.
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A D-skew-Hermitian ψ is clearly of the form (d1, d2) 7→ d1ad
†
2 for a certain

non-zero element a ∈ D with a† = −a; it follows that an endomorphism ρd of
V lies in uD(V, ψ) if and only if da+ ad† = 0⇔ da− a†d† = 0⇔ da = (da)†.

By the Skolem-Noether theorem the Rosati involution is related to the
canonical involution

e 7→ ẽ := TrdD/E(e)− e

by d† = b−1d̃b for a certain non-zero b ∈ D. In fact, from the equality a† = −a
follows b = a, so that ρd ∈ uD(V, ψ) is equivalent to da = (da)† = a†d† = −d̃a,
which in turn is equivalent to

d = −
(
TrdD/E(d)− d

)
.

We deduce that ρd ∈ uD(V, ψ) if and only if TrdD/E(d) = 0, so we see that
the isomorphism (of Q-vector spaces)

D
∼−→ EndD(V )

d 7→ ρd

restricts to an isomorphism
{
d ∈ D|TrdD/E(d) = 0

} ∼−→ uD(V, ψ). Now D
is Q-vector space of dimension 8, and the equation TrdD/E(d) = 0 imposes
two (independent) Q-linear conditions, so uD(V, ψ) is of dimension 6 over Q.
Extending scalars to C, we get that the Lie algebra hC is contained in a six-
dimensional vector space over C; now hC is semisimple (as A is of type two),
hence it admits a decomposition hC ∼=

∏t
i=1 hi, where each hi is a simple Lie

algebra. We have an obvious constraint on the algebras hi, namely the total
dimension

∑t
i=1 dimC hi must not exceed 6; in particular, the dimension of

each simple factor must not exceed 6. The standard classification results for
simple Lie algebras over C imply that the only simple Lie algebra of dimension
at most 6 is sl2, which is of dimension 3, so the only possibilities for hC are
sl2 and sl2 × sl2.

The possibility hC ∼= sl2 can be easily excluded, for example by observing
that the decomposition of VC as a product of 4 modules of dimension 2 would
imply End(VC)sl2 ∼= M4(C), since there is only one 2-dimensional module over
sl2, up to isomorphism.

8.2.3 Type III

In this case we already know from Theorem 5.1.13 that we cannot expect the
Hodge (resp. Tate) conjecture to hold in its strong form Dk(An) = Bk(An)
for every choice of natural numbers k, n. In fact, Theorem 8.1.1 implies that
the space of Hodge classes of degree 4 is not generated by divisor classes,
but we still get some positive results (note that the following is the only case
we have to treat, since the results of Shimura collected in Proposition 7.1.2
exclude the case III(2)):
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Proposition 8.2.2. Let A be a 4-dimensional simple Abelian variety over C
(resp. a number field K). Suppose that A is of type III, so its endomorphism
algebra End0(A) is a totally definite quaternion algebra D over Q. Then

• h is the centralizer of D in sp(V, ϕ) (resp. h` is the centralizer of D` in
sp (V`, ϕ`))

• h is a Q-form of so4 (resp. a Q`-form of so4), so the Mumford-Tate
conjecture holds for A

• The space B2(A) (resp. T`(A)) is 6-dimensional, D2(A) (resp. D2
` (A))

is 1-dimensional and B2(A) = D2(A)+W (A) (resp. T 2
` (A) = D2

` (A)+
W`(A))

Proof. By computing End(VC)hC ∼= D ⊗ C ∼= M2(C) we find that VC is
isomorphic to the direct sum of two copies of an irreducible module W . Fix
an isomorphism VC ∼= W ⊕W .

We now want to better understand the bilinear form ϕC induced on W⊕W
by the polarization on A. The space

(∧2 VC

)hC ∼= D1(A)⊗C is 1-dimensional:

Lefschetz’s Theorem identifies this space to the space of divisors on A, and
Theorem 3.4.4 then yields that its dimension is the same as that of Rosati-
invariant endomorphisms of A. Up to extension of scalars to R, the Rosati
involution is the standard involution on the quaternions, whose set of fixed
points has dimension 1

4 dimRH = 1. The equality(
2∧

(W ⊕W )

)h

∼=

(
2∧
W

)hC

⊕

(
2∧
W

)hC

⊕ (W ⊗W )hC

then shows that
(∧2W

)hC
must be trivial (otherwise we would have at least

a two-dimensional invariant subspace), so (W ⊗W )hC is of dimension 1, which

means that W is self-dual; as
(∧2W

)hC
= 0, W cannot be symplectic, so it

is orthogonal.

Choose a (nontrivial) hC-invariant orthogonal form α on W . Then the
formula

ϕ̃ (x1 ⊕ x2, y1 ⊕ y2) = α(x1, y2)− α(x2, y1)

defines a nontrivial, symplectic, hC-invariant bilinear form on VC. Since, as
we have shown, the space of such forms is 1-dimensional, ϕ̃ must agree with
ϕC up to multiplication by constants, so (rescaling α if necessary) we can
assume ϕC = ϕ̃. In particular, this implies hC ⊆ so(W,α) ∼= so4.

We want to show that the inclusion is in fact an equality. Suppose by
contradiction that hC were smaller. As so4

∼= sl2× sl2 is of rank 2, this would
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force the rank of hC to be 1, and since h is semisimple this would imply h ∼= sl2.
But the irreducible representations of sl2 are classified by their dimension,
so W would be forced to be Sym3 (Std), which is a symplectic (hence non-
orthogonal) representation, contradiction. We can therefore conclude that h
is a Q-form of so4, which in particular shows the Mumford-Tate conjecture
for A.

We now turn to computing all the spaces involved in our statement. Let us
start by describing the centralizer of End0(A) in sp(V, φ). As this centralizer
always contains h, it is enough to show that it has the same dimension as
h, and to do this we can extend scalars to the algebraic closure. Let B be
a linear transformation in sp(VC, φC), and suppose that it commutes with
End0(A) ⊗C ∼= M2 (C). Then B commutes with both the projection on the
first factor W and the swapping of the two factors W , which forces B to act
as B(w1 ⊕ w2) = B̃w1 ⊕ B̃w2 for a certain endomorphism B̃ of W . Since B
also preserves ϕC we immediately deduce

α(x1, y2) = ϕC(x1 ⊕ 0, 0⊕ y2) = ϕC(B(x1 ⊕ 0), B(0⊕ y2)) = α
(
B̃x1, B̃y2

)
,

so B̃ ∈ so(W,α). It follows that the extension to C of h and of the centralizer
of D inside sp(V, φ) agree, so these two spaces coincide, as we wanted to show.

The space B2(A) of Hodge (resp. Tate) classes is 6-dimensional: as usual,
being only interested in dimensions, we can extend scalars to an algebraic
closure; W is then isomorphic to the standard representation of sl4, and we
need to compute the dimension of the invariant subspace in

4∧
(Std⊕Std) ,

which can be done by hand, keeping track of the weights that appear in the
various exterior powers, or with the aid of a computer package (such as LiE).

We already remarked that D1(A) is one-dimensional, hence the same holds
for D2(A). In order to better understand the structure of B2(A) ⊗ C we
exploit the fact that it is equipped with actions of both hC and D∗, and the
two commute. The derived subgroup (D∗)′ of D∗ is simply the group of its
elements of norm 1; regard it as an algebraic group over Q and let d be its
Lie algebra. (D∗)′ is semisimple and its Lie algebra is of dimension 3 (the Lie
algebra of D∗ is simply D, and d is cut inside D by a single equation), so d is
a Q-form of sl2.

Observe now that V is free of rank 2 over D, so End(V )d ∼= M2(D) and
therefore

End(V ⊗C)dC ∼= M2(D)⊗C ∼= M2(M2(C)) ∼= M4(C),
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hence VC is, as a dC-module, isomorphic to the direct sum of four copies of
the standard representation of sl2,C ∼= dC. Let us fix the Cartan subalgebra

of sl2,C given by the diagonal matrices

(
t 0

0 −t

)
. Let ν be the character

sending

(
t 0

0 −t

)
to t. Then the standard representation of sl2,C is the sum

of two 1-dimensional character spaces, one corresponding to ν and one to −ν.
Consequently, VC decomposes as the sum of two weight spaces Vν , V−ν , each
of dimension 4.

We now remark that, since the actions of hC and dC on V commute, Vν
is a hC-submodule of VC (and in fact it can be identified to one of the two
copies of W , since these are the only two 4-dimensional submodules of V with
respect to the action of hC). It follows that the 1-dimensional subspace

4∧
Vν ⊂

4∧
V

is a hC-submodule.
On the other hand, the Cartan subalgebra we have chosen acts on it via the

character 4ν, so - as a module under dC -
(∧4 V

)hC
= B2(A)⊗C contains at

least an irreducible submodule of dimension 5. We also know that D2(A)⊗C
is a 1-dimensional dC-submodule, so - by comparing dimensions - we finally
get the structure of B2(A)⊗C as a module under the action of dC:

B2(A)⊗C ∼= Sym0 (Std)⊕ Sym4 (Std) ,

where the trivial subrepresentation Sym0 (Std) can be identified with D2(A)⊗
C.

Finally, W (A)⊗C is a dC-submodule of B2(A)⊗C that is not contained
in D2(A)⊗C (the proof of Theorem 8.1.1 shows that it contains a subspace
whose intersection with D2(A) is trivial), so it must contain the irreducible
submodule of dimension 5, and W and D2(A) together generate B2(A).

8.2.4 Type IV

We start by fixing the notation we will use throughout the whole section. We
denote by E a CM field of degree e over Q, whose maximal totally real subfield
will be denoted E0. The unique nontrivial involution of E fixing E0 will be
denoted by a 7→ a′. Let L be the normal closure of E in Q. By Corollaries
1.2.3 and 1.2.4 L is again a CM field, and complex conjugation on L (denoted
ι) lies in the center of Gal(L/Q). If ρ is an L-valued map we also write ρ for
ι ◦ ρ. Let furthermore e0 be the degree of E0 over Q, ρ1, . . . , ρe0 be the e0

different embeddings of E0 in L and σ1, . . . , σe0 , τ1 = ι ◦ σ1 = σ1, . . . , τe0 =
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ι ◦ σe0 = σe0 the 2e0 = e embeddings of E in L. Fixing once and for all
an embedding L ↪→ C we identify embeddings of E in L and in C. We also
set R := Hom (E,C) = {σ1, . . . , σe0 , τ1, . . . , τe0} and TE := ResE/Q (Gm,E);
clearly TE is a Q-torus of rank [E : Q], whose character group is the free
Abelian group on the set R.

Let Θ be the subgroup of X∗ (TE) generated by the elements σi + ι ◦ σi

for i ranging from 1 to e0: we have Θ ∼=
e0⊕
i=1

Z (σi + τi). Inside TE lies the

subtorus UE := {a ∈ TE |aa′ = 1}, whose character group is

X∗ (UE) =
X∗ (TE)⊕e0

i=1 Z (σi + τi)
=
X∗ (TE)

Θ
.

Finally, if k is an imaginary quadratic field contained in E, we set

SUE/k :=
{
x ∈ UE |NE/k(x) = 1

}
.

The character group of SUE/k is the quotient of X∗ (UE) by the submodule
generated by

∑
σ∈Gal(L/K) σ[ρ] for [ρ] varying in X∗ (UE) (this follows imme-

diately by differentiating the definition of the norm). It is easy to check that
SUE/k is of (pure) codimension 1 inside UE : it has codimension at most 1 by
Krull’s theorem (note that the condition on the norm can be expressed, for
elements of UE , by just one equation), and the equality can easily be shown
at the level of Lie algebras.

Indeed, note that E0 and k intersect only trivially, so

2[E0 : Q] ≤ [E0k : Q] ≤ [E : Q] = 2[E0 : Q]

and E = E0k.
We have the following simple description for the Lie algebras: on one hand,

uE = {a ∈ E|a+ a′ = 0}, and on the other

suE/k =
{
a ∈ uE | trE/k(a) = 0

}
;

write E = E0[i] with i ∈ k and a = e1 + e2i (e1, e2 ∈ E0) for a generic element
of E. If we had the equality SUE/k = UE , then a + a′ = 0 would imply
trE/k(a) = 0, but with the above notation the first condition is simply e1 = 0,
so we should have trE/k(e2i) = 0 for every e2 ∈ E0, which clearly does not
happen.

Summarizing, we have thus established the following

Proposition 8.2.3. Notation as above.
For every imaginary quadratic field k contained in E the torus

SUE/k :=
{
x ∈ UE |NE/k(x) = 1

}
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has codimension 1 in UE and character group

X∗
(
SUE/k

)
=

X∗ (UE)〈∑
σ∈Gal(L/K) σ[ρ]

〉
[ρ]∈X∗(UE)

We have the following converse, which is the ’Key Lemma’ of the last
section of [MZ95]:

Lemma 8.2.4. Suppose H is an algebraic torus of codimension 1 in UE.
Then there exists an imaginary quadratic field k contained in E such that
H = SUE/k.

Proof. The inclusion H ↪→ UE induces a surjection

π : X∗ (UE) � X∗ (H)

on character groups. Let ∆ be the kernel of π. Character groups are free
Abelian (of finite rank), so ∆ itself has to be free, and is of rank one because
H is of codimension 1 in UE . Choose a generator δ of ∆.

The Galois module structure of the character groups also yields a map
κ : Gal(L/Q)→ Aut (∆) ∼= {±1}. Let I be the kernel of κ.

Observe that ι acts on X∗ (UE) as multiplication by −1: indeed, X∗ (UE)
is generated by σ1, . . . , σe0 , and for every index i we have [ι◦σi] = [τi] = −[σi]
in the quotient by Θ. In particular, ι acts as multiplication by −1 on ∆, so
κ is surjective and I is normal of index 2 in Gal(L/Q). Let k be the field
associated to I by Galois theory: it is a Galois extension of Q of degree 2, and
- since it is not fixed by complex conjugation, which does not belong to I - it
is an imaginary quadratic field.

We want to show that H = SUE/k.
Write the generator δ of ∆ as

∑
ρ∈R c(ρ) [ρ] mod Θ. The integer c(ρ) is

not well-defined, but the difference c (ρ)−c (ρ) is. Fix a ρ0 ∈ R. By transitivity
of the Galois action, for every ρ1 ∈ R there exists σ ∈ Gal(L/Q) such that
σ ◦ ρ0 = ρ1, and σ ◦ ρ0 = σ ◦ ρ0 = ρ1, since ι belongs to the center of the
Galois group. For any σ in the Galois group, thinking κ as a map with values
in {±1}, we get

σ(δ) = κ(σ)δ = κ(σ) ·
∑
ρ∈R

c(ρ) [ρ] mod Θ,

and on the other hand

σ(δ) =
∑
ρ∈R

c(ρ) [σ ◦ ρ] mod Θ.

Using the equality ρ1 = σ ◦ρ0 and comparing the value of c (ρ1)− c (ρ1) in
the two expressions for σ (δ) we get κ(σ) (c (ρ1)− c (ρ1)) = c (ρ0) − c (ρ0), so
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there exists a non-negative integer m such that, for every ρ ∈ R, the absolute
value of c (ρ)−c (ρ) equals m. Note that m 6= 0, for otherwise δ would be zero
in the quotient modulo Θ and π would be injective, which is not the case.

In order to identify k to a subfield of E we show that k ⊆ ρ(E) for any
embedding ρ ∈ R, and to this end it suffices to show that any automorphism
σ ∈ Gal(L/ρ(E)) fixes k. Suppose by contradiction σ ◦ ρ = ρ but σ(δ) = −δ.
Then c(ρ)− c(ρ′) = −c(ρ) + c(ρ′), so m = 0 and δ = 0, which is absurd.

Finally, by construction (and Galois theory) Gal(L/k) is a quotient of
kerκ, so every σ in Gal(L/k) acts trivially on δ; it follows that

[L : k]δ =
∑

σ∈Gal(L/k)

σδ =
∑

σ∈Gal(L/k)

σ

∑
ρ∈R

c(ρ) [ρ] mod Θ

 =

=
∑
ρ∈R

c(ρ)


∑

σ∈Gal(L/k)

[σ ◦ ρ] mod Θ

︸ ︷︷ ︸
0

 = 0 in X∗
(
SUE/k

)
,

since - as we already remarked - X∗
(
SUE/k

)
is the quotient of UE by the

subgroup generated by
∑

σ∈Gal(L/k)

[σ ◦ ρ] mod Θ for ρ varying in R. This

implies that [L : k]δ belongs to the kernel of the projection

π1 : X∗ (UE)→ X∗
(
SUE/k

)
,

so δ is a torsion element in the quotient X∗
(
SUE/k

)
, which is free, so δ itself

is mapped to zero by π1. Hence kerπ ⊆ kerπ1, and since both these groups
are free of rank 1 and both quotients are free this must be an equality, as we
wanted to show.

From now on, we suppose that A is a simple Abelian fourfold of type IV
defined over C (resp. a number field K).

Thanks to Proposition 7.1.2, the endomorphism algebra of A is a CM
field E, whose degree e over Q has to divide 8 by the Albert classification.
We therefore need to tackle three cases, corresponding to the three possible
values of e0: 1, 2 or 4.

8.2.4.1 Type IV(1,1)

Keeping all of the above notation, suppose e0 = 1, so E is an imaginary
quadratic field.

Then we have exactly two possibilities:
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• E acts with multiplicities {nσ, nτ} = {1, 3}, in which case h = u (V/E),
so Theorem 5.1.13 (or its `-adic analogue) applies and yields that the
Hodge (resp. Tate) conjecture is true for all powers of A;

• E acts with multiplicities nσ = nτ = 2, in which case h = su (V/E) and
the relevant spaces have the following dimensions:

– B2(A) is 3-dimensional

– D2(A) is 1-dimensional

– W (A) ∼=
∧4
E V

∗ is 2-dimensional

Moreover, B2(A) ∼= D2(A)⊕W (A).

Proof. By Proposition 7.1.2 we have nσnτ 6= 0, and since we know that nσ +
nτ = 4 it follows that the two above are the only possible cases.

Assume that {nσ, nτ} = {1, 3}: then this becomes an immediate applica-
tion of Theorem 7.3.1.

Suppose, on the contrary, nσ = nτ = 2. Then Lemma 8.1.2 ensures
h ⊆ su(V/E) (resp. h` ⊆ su(V`/E`)).

We want to show that hC is semisimple, in order to use our usual repres-
entation theoretic machinery.

From Lemma 3.2.9 we know that the center of h is contained in the Lie
algebra uE = {e ∈ E|e+ e′ = 0}; on the other hand, hab ⊂ h ⊆ su(V/E) ⊆
{e ∈ EndE(V )| trE(e) = 0}. An element in the intersection is therefore a scalar
acting on V with trace zero, hence it is zero: this shows that the Abelian part
of h is trivial and h is semisimple. The same argument also works in the `-adic
case, where the conclusion of Lemma 3.2.9 is replaced by h` ⊆ E ⊗ Q` (the
proof being essentially identical, cf. [Chi90], Proposition 3.1.1).

The inclusion h ⊆ su(V/E) implies hC ⊆ sl4,C, the latter acting on VC
as Std⊕Std∗. Write VC ∼= V1 ⊕ V2 for the decomposition of VC with respect
to the action of sl4: this is also a decomposition under the action of hC.
The usual argument shows that V1, V2 are irreducible and non-isomorphic as
h-modules:

End (VC)h ∼= End (V )h ⊗C ∼= E ⊗C ∼= C2,

where we use the fact that ` splits in E.

As V2 is the dual representation of V1 and by the above computation it is
not isomorphic to it, we see that the action of hC on V1 must be irreducible,
given by minuscule weights and of dimension 4, and on the other hand rank h ≤
rank sl4 = 3. Using the results collected in the table of Theorem 2.4.6 we find
that hC ∼= sl4 (recall that the root systems A3 and D3 are actually isomorphic)
and that V1 is isomorphic to the standard representation of sl4.
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Remark 8.2.5. The proof of Theorem 7.4 in [MZ95] relies on the fact that

the space
(∧2 VC

)h
is one-dimensional to deduce that V1 is not self-dual.

Though in this specific case the conclusion holds, taking h = so4, V1 = Std

and V2 = Std∗ ∼= Std gives an example where
(∧2 VC

)h
is one-dimensional

and V1 is self dual.
This is easily checked, since

2∧
(Std⊕Std) ∼=

(
2∧

Std

)⊕2

⊕ (Std⊗Std)

∼=

(
2∧

Std

)⊕3

⊕ Sym2 (Std) ,

and the invariant subspace is of dimension one, coming from the single line of
orthogonal forms in Sym2 (Std).

By rank considerations we therefore have h = su (V/E) (resp. h` =
su (V`/E`) in the `-adic case).

Everything else now follows from a direct computation: the dimension of

the space of divisors is the same as that of
(∧2 V ∗C

)h
, which in turn is exactly

the same as dimQE0 = 1 (these being the Rosati-symmetric endomorphisms)
by Theorem 3.4.4, so the space D2(A) is 1-dimensional, while the space of

invariants inside
4∧

(V1 ⊕ V ∗1 ), which we write as

4∧
V1 ⊕

(
3∧
V1 ⊗ V ∗1

)
⊕

(
2∧
V1 ⊗

2∧
V ∗1

)
⊕

(
V1 ⊗

3∧
V ∗1

)
⊕

4∧
V ∗1 ,

is 3-dimensional. This is perhaps most easily seen by exploiting the simmetry∧3 V1
∼= V ∗1 :

• The first and last summand in the direct sum decomposition are trivial
representations (there is no non-trivial morphism from a simple group
to the 1-dimensional torus Gm).

• The summand
∧3 V1 ⊗ V ∗1 ∼= (V ∗1 )⊗2 has no invariants, since the invari-

ants in (V ∗1 )⊗2 ∼= S2V1⊕
∧2 V1 are precisely the h-equivariant morphisms

between V1 and V ∗1 , which we know to be reduced to 0. The same argu-
ment also works for the next-to-last summand.

• Finally,
∧2 V1

∼=
∧2 V ∗1 are both isomorphic to the self-dual (orthogonal)

minuscule representation given by ω2, so the space of its invariants is
1-dimensional, exactly because this is the necessary and sufficient con-
dition in order for an irreducible representation to be self-dual.



8.2. EXCEPTIONAL CLASSES: NECESSARY CONDITION 135

W (A) =
∧4
E V

∗ is of dimension 1 over E (being the fourth exterior power
over E of a 4-dimensional space over E), so it is 2-dimensional over Q. Since
both D2(A), of dimension 1, and W (A), of dimension 2, are contained in
B2(A) (whose dimension we computed to be 3) and their intersection is trivial
because of the proof of Theorem 8.1.1, we finally get

B2(A) ∼= D2(A)⊕W (A)

and we are done.

8.2.4.2 Type IV(2,1)

In order to treat the `-adic case we shall need a few arithmetic preliminaries.

Proposition 8.2.6. Let u be algebraic over Q, u /∈ Q.

Let S = {u1 = u, u2, . . . , un} be the set of Galois conjugates of u, and let
Γ be the multiplicative subgroup of Q∗ generated by u1, . . . , un. If Γ is free of
rank 1, then Q(u) is a quadratic field.

Proof. Let γ be a generator of Γ and consider F = Q(γ). Clearly Q(u) is
contained in Q(γ), so it is enough to show that F is a quadratic field.

We start by showing that F is Galois over Q, that is, that all the Galois
conjugates of γ are in F . Take any embedding σ : F ↪→ Q. σ acts on the set
S as a permutation: write σ(ui) = uτ(i), where τ ∈ Sn. By definition of Γ,

there exist integers m1, . . . ,mn such that γ =
n∏
i=1

umii : then

σ(γ) =
n∏
i=1

σ(ui)
mi =

n∏
i=1

umiσ(i) ∈ Γ,

and since every element of Γ is a power of γ we finally have σ(γ) = γk for
a certain k ∈ Z, which shows that every Galois conjugate of γ belongs to F .
Moreover, the same argument also shows that any σ ∈ Gal(F/Q) restricts to
an automorphism of Γ, whence a map

ψ : Gal(F/Q)→ Aut(Γ) ∼= Aut(Z) ∼= {±1} .

On the other hand, ψ is injective, because an element σ ∈ Gal(F/Q) is
completely determined by σ(γ); it follows that Gal(F/Q) has at most two
elements, i.e. that [F : Q] ≤ 2. This forces [Q(u) : Q] ≤ [F : Q] ≤ 2, so Q(u)
is a quadratic field and coincides with Q(γ).
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Proposition 8.2.7. Let K be a number field, k a topological field and ρ :
Gal(K/K)→ GL(k) a continuous Galois representation that ramifies at most
at finitely many primes of K.

Then the set {ρ(Frobv)|v unramified} is a dense subset of the image of ρ.

Proof. In a profinite group G a subset X is dense if and only if for every finite
quotient π : G� Gi the image of X through π equals Gi.

We apply the above to the case where G = ρ
(
Gal(K/K)

)
and X is the

set of Frobenius images: the finite quotients of G correspond to finite Galois
extensions of K and, consequently, Chebotarev’s density theorem implies that
the image of X in any finite quotient is all of it.

Proposition 8.2.8. Let A be an Abelian variety of dimension g defined over
the number field K, ` a rational prime and ρ` : Gal

(
K/K

)
→ End(T`(A)) the

continuous `-adic Galois representation attached to A.

Then, for every choice of ` outside a finite set, there exists a Frobenius
element Frobv ∈ Gal

(
K/K

)
such that

• ` is unramified in K

• there is a place w of K above ` of good reduction for A

• the multiplicative subgroup of Q∗ generated by the eigenvalues of Frobv
(thought of as an endomorphism of the `-adic Tate module) does not
contain any nontrivial root of unity.

Proof. We begin by fixing our notation. v will be a place of K above the
rational prime p, which we will tacitly assume to be distinct from `. The
characteristic polynomial of a Frobenius element Frobv acting on T`(A) is
monic with integral coefficients and does not depend on the choice of ` (as
long as ` 6= p); let it be denoted by Φv(x). The splitting field of Φv(x) over
Q will be denoted Fv, and we will write Mv for the subgroup of Q∗ generated
by the eigenvalues of Frobv acting on T`(A).

Clearly Φv(x) has degree 2g, where g is the dimension of A, since this
is the rank of T`(A). The degree [F : Q] is therefore uniformly bounded
by a function of g (and we can take this function to be (2g)!). If a root
of unity ζn of order n belongs to Mv, then it certainly belongs to Fv, so
ϕ(n) = [Q (ζn) : Q] ≤ [Fv : Q] ≤ (2g)! is bounded (independently of `).

It is well known that, for a fixed k, the number of solutions to ϕ(n) ≤ k
is finite, so there exists an integer M independent of ` such that any root of
unity ζ in Fv satisfies ζM = 1.

Let Ψ(x) be the polynomial x
M−1
x−1 and ΩK be the set of finite places of K.
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Our admissible set of primes will be{
` rational prime

∣∣∣∣∣∃w ∈ ΩK , w|`, of good reduction for A

and ` does not divide Ψ(1)

}
Clearly there is only a finite number of primes that do not belong to the

above set.

We want to explicitly determine a neighborhood U of the identity of
Gal

(
K/K

)
such that, for every Frobenius element Frobv in U , Mv does

not contain any nontrivial root of unity. This, together with the density of
Frobenius elements in Gal

(
K/K

)
, would be enough to prove the proposition.

Consider the continuous Galois representation

ρ` : Gal
(
K/K

)
→ Aut(T`(A))

and identify Aut(T`(A)) with GL (Z`) through the choice of a basis. Let U`
be the open neighborhood of the identity in GL (Q`) given by the matrices N
such that ||N − id||` < `−1, i.e. those matrices that can be written as id+ P ,
where P ∈M2g×2g (Z`) has all its coefficients divisible by `.

We set U := ρ−1
` (U`). This is clearly an open neighbourhood of the

identity, and we want to show that every Frobenius element Fv in U has the
required properties. We argue by contradiction, supposing there is a nontrivial
root of unity in Mv.

Let therefore Frobv be in U and λ1, · · · , λ2g ∈ Fv be the eigenvalues of
Frobv. Note that each λi is an algebraic integer, so it belongs to OFv . Choose
a place l of Fv above ` and let λ1, · · · , λ2g be the reductions of λ1, · · · , λ2g in
OFv/l.

We claim that λi = 1. To see this, simply notice that the λi’s are the
eigenvalues of the reduction (modulo `) of ρ` (Frobv) acting on F2g

` : indeed,
taking reductions (modulo `) and taking characteristic polynomials commute,
so the eigenvalues of the reduction are the reductions of the eigenvalues. Note
that since Fv/Q is Galois, all the places above ` are conjugated to each other,
so everything is well-defined up to the action of the Galois group, and in
particular the finite field OFv/l does not depend on our choice of l, up to
isomorphism.

The definition of U` implies that ρ` (Frobv) reduces to the identity, so the
reductions λi equal the eigenvalues of the identity, i.e. every λi equals 1.

Suppose now ζ = λn1
1 · · ·λ

n2g

2g ∈Mv is a nontrivial root of unity. ζ belongs
to OF (it belongs to F by construction and it certainly is an algebraic integer),
so it makes sense to consider ζ, its reduction modulo l.

On one hand, the equation ζ = λn1
1 · · ·λ

n2g

2g ∈Mv implies

ζ =

2g∏
i=1

λ
ni
i = 1 (mod l).
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On the other hand, we know ζM = 1, and since ζ 6= 1 we also get Ψ(ζ) = 0

(recall that Ψ(x) =
xM − 1

x− 1
); now Ψ(x) is a polynomial with integral coeffi-

cients, so

0 = Ψ (ζ) = Ψ
(
ζ
)

= Ψ(1) = Ψ(1) (mod l) :

as Ψ(1) is a rational integer, this clearly implies Ψ(1) ≡ 0 (mod `), which
contradicts our choice of `. This completes the proof.

We are now in a position to prove the following

Proposition 8.2.9. Notation as above. If A is of type IV(2,1), then h ∼=
uE(V, ψ) (resp. h ∼= uE`(V`, ψ`)), so Theorem 5.1.13 applies and the Hodge
(resp. Tate) conjectures holds for all the powers of A.

Proof. Thanks to Theorem 5.3.5, and since we only need to establish results
about ranks, we can choose ` to be a prime that splits completely in E and
such that there is a place of E of good reduction for A of residue characteristic
`.

We have nσ1 +nτ1 = nσ2 +nτ2 = 2, and by Proposition 7.1.2 we can assume
that

(nσ1 , nτ1) = (2, 0), (nσ2 , nτ2) = (1, 1). (∗)

We want to study the semisimple and the Abelian part of h separately.
Let c be the center of h. Lemma 3.2.9 and its obvious `-adic analogue imply
that c is contained in the 2-dimensional Lie algebra uE = {a ∈ E|a′ = −a}
(resp uE`).

Suppose c = 0. Then h is semisimple and contained in su(V/E), which is
impossible, since the centralizer of su(V/E) in End(V ) is a quaternion algebra
over E0, while the centralizer of h is the endomorphism algebra, i.e. E itself.

Suppose c is of rank 1. In this case we really need to treat the geometric
and `-adic cases separately.

In the Hodge case, Key Lemma 8.2.4 yields the existence of an imaginary
quadratic field k such that c = suE/k, so hg ⊆ suV/k and using Lemma 8.1.2
we get a contradiction with (∗).

We now turn to the `-adic case. Proposition 8.2.8 allows us to choose a
Frobenius element Frv ∈ G`(Q`) such that the multiplicative group generated
by its eigenvalues does not contain any root of unity different from 1. Let
q be the cardinality of the residue field at v and consider λ := Fr2

v /q. The
determinant of Frv acting on the `-adic module of A is qdim(A), so λ actually
belongs to H` (Q`). Let u = detE` λ ∈ E` ∼= Q4

` .

Note that we have an embedding E ↪→ E` ∼= Q4
` given, as usual, by

e 7→ (σ1(e), τ1(e), σ2(e), τ2(e)) ,
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and because of the compatibility of the Frobenius with the Galois action the
determinant of λ lies in this copy of E inside E`. Moreover, the `-adic log-
arithm of u does not vanish, since u is not divisible by `. Note that we can
suppose that log u belongs to h`: the `-adic logarithm maps a neighborhood
of the identity of H` to h`, so all we need to do is choose Frv sufficiently close
to id, which is always possible.

Thinking log(u) as an E`-linear operator on V` we can write log(u) =
log detλ = tr log(λ) (the latter being well-defined assuming we have chosen
the Frobenius element sufficiently close to the identity); on the other hand,
the trace operator is zero on the semi-simple part of h` and is multiplication
by 2 on the Abelian part, since V` is free of rank 2 over E`. It follows that
log(u) belongs to c`, hence - assuming this is of rank 1 - c` = Q` log(u).

c` is an algebraic Lie algebra (it is the algebra of the center of H`), so the
eigenvalues ν1, . . . , ν4 of log(u) are contained in a 1-dimensional Q-subspace of
an algebraic closure of Q`. This implies in particular that the multiplicative
group M generated by exp(ν1), . . . , exp(ν4) has rank at most 1. Note that
exp(ν1), . . . , exp(ν4) are the eigenvalues of the linear operator u acting on V`,
but since u acts diagonally through the four embeddings of E in Q we can
identify them to the Galois conjugates of u. Using that no nontrivial root of
unity can be written as a product of eigenvalues of λ we see that M is free
of rank 1. Finally, note that u is not stable under complex conjugation, since
log u belongs to uE , so (log u)′ = − log u and the claim follows exponentiating
both members.

From Proposition 8.2.6 it then follows that Q(u) is an imaginary quadratic
subfield of E. We deduce E = E0 · Q(u), so E is Galois over Q (being the
compositum of two Galois extensions). A CM Galois field of degree four over
Q has Galois group isomorphic to (Z/2Z)2 (cf. the proof of Lemma 4.2.4), so it
admits exactly three sub-extensions of degree 2, two of which are imaginary.
Let k′ be the unique imaginary quadratic field contained in E and distinct
from k. The norm NE/k′ must send u to a unit in Ok′ , and since the latter
(thanks to Dirichlet’s Unit Theorem) has unit group of rank zero it follows that
NE/k′(u) is a root of unity; on the other hand, it is a product of conjugates of
u, so it cannot be a nontrivial root of unity, and it follows that NE/k′(u) = 1.

Differentiating and extending scalars we find c ⊆ suE/k′ ⊗ Q`, and this
must be an equality because both algebras are of dimension 1. We now get a
contradiction exactly as in the geometric case.

The above proves that c cannot be 1-dimensional, so we must have c = uE
(resp. uEl)

We now turn to studying the semisimple part of h. The hC-module VC
decomposes as a direct sum VC ∼= V1 ⊕ V2, where each Vi is a free module of
rank 2 over E ⊗E0,ρi C ∼= C×C. Each Vi, in turn, splits as Vσi ⊕ Vτi , where,
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as usual, for each ρ ∈ R we have set

Vρ = {v ∈ VC|e · v = ρ(e)v ∀e ∈ E} .

Let ψi be the restriction of ψ to Vi. Observe that for v1 ∈ V1, v2 ∈ V2 and
every e ∈ E0 we have

ψ(e · v1, v2) = ψ(v1, e
′ · v2) = ψ(v1, e · v2),

since the Rosati involution is the transpose map with respect to ψ, and on the
other hand it is the identity on E0. This implies

ρ1(e)ψ(v1, v2) = ρ2(e)ψ(v1, v2)

for every e, so (as ρ1 6= ρ2) the only possibility is ψ(v1, v2) ≡ 0, hence V1, V2

are orthogonal with respect to ψ. As ψ is non-degenerate on V1⊕V2, this forces
the restriction ψi of ψ to Vi to be non-degenerate, and the action of hC must
preserve both ψ1 and ψ2. We can therefore write hC ⊆ u (V1, ψ1)⊕ u (V2, ψ2),
so that the semisimple part of hC is contained in su (V1, ψ1) ⊕ su (V2, ψ2).
Moreover, we get the following description for the Abelian part cC:

z1 · id︸ ︷︷ ︸
on Vσ1

,−z1 · id︸ ︷︷ ︸
on Vτ1

 ,

z2 · id︸ ︷︷ ︸
on Vσ2

,−z2 · id︸ ︷︷ ︸
on Vτ2


 ⊂ u (V1, ψ1)⊕ u (V2, ψ2)

Since the projection of hss on each factor u(Vi, ψi) is nonzero (Vσi is an
irreducible hC-module) and the algebras su (Vi, ψi) are simple (semisimple of
rank 1), we see that either the inclusion hssC ⊆ su (V1, ψ1) ⊕ su (V2, ψ2) is
an equality, or hssC is the graph of an isomorphism between su (V1, ψ1) and
su (V2, ψ2).

In order to exclude this second case we simply need to exhibit an element
of the form (0, x) ∈ hssC with x 6= 0. This can be done by comparing the Hodge
(resp. Hodge-Tate) decomposition of VC and the one given by the action of

h. Write V
(−i,−1+i)
j for Vj ∩V (−i,−1+i)

C (resp. Vj ∩VC(i)). Using the equalities
established at the beginning of this Chapter and comparing dimensions (using
(∗)) we get the following equalities:

Vσ1 = V
(−1,0)

1 , Vτ1 = V
(0,−1)

1

Vσ2 = V (−1,0)
σ2 ⊕ V (0,−1)

σ2 , Vτ2 = V (−1,0)
τ2 ⊕ V (0,−1)

τ2 ,

where the dimension of the various spaces are given by

dimC V
(i,−1+i)

1 = 2, dimC V
(i,−1+i)
σ2 = 1, dimC V

(i,−1+i)
τ2 = 1.
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For example, the last equalities are obtained by noticing that

dim
(
V

(−1,0)
∗2

)
= n∗2 = 1,

so V∗2
∼= V

(−1,0)
∗2 ⊕ V (0,−1)

∗2 (where ∗ ∈ {σ, τ}); the others are similar.
The finer decomposition of V we need is

V ∼= V
(−1,0)

1︸ ︷︷ ︸
Vσ1

⊕V (0,−1)
1︸ ︷︷ ︸
Vτ1

⊕V (−1,0)
σ2 ⊕ V (−1,0)

τ2 ⊕ V (0,−1)
σ2 ⊕ V (0,−1)

τ2 .

Let µ : Gm,C → End(VC) the cocharacter given on points by

µ(z) = z id
V −1,0
C
⊕ id

V 0,−1
C

.

Thanks to the alternative characterization of the Mumford-Tate group (cf.
3.1.2 for the geometric case and Sen’s Theorem for the `-adic one) we know
that µ factors through G (resp. G`), so µ(z) − z

2 id (being traceless) is an
element of h. Write

µ(z)− z

2
id =

(
µ1(z)− z

2
id, µ2(z)− z

2
id
)
∈ u (V1, ψ1)⊕ u (V2, ψ2)

and note that our description of cC implies that
(
µ1(z)− z

2 id, 0
)
∈ cC, so

h̃ :=
(
0, µ2(z)− z

2 id
)

belongs to hC. In matrix terms and with respect to the

above decomposition of V , h̃ acts as
04

z/2

z/2

−z/2
−z/2

 ,

so its trace on both Vσ2 and Vτ2 is zero, hence µ2(z)− z
2 id belongs to su(V2, ψ).

It follows that h̃ belongs to the semisimple part of hC, thus giving the ele-
ment we were looking for and showing that hssC is all of su (V1, ψ1)⊕su (V2, ψ2).
By rank considerations it then follows h = uE(V, ψ).

8.2.4.3 Type IV(4,1) - the CM case

There are exactly two possibilities:

1. E does not contain an imaginary quadratic field k acting with mul-
tiplicities {nσ, nτ} = {2, 2}. In this case h equals u(V/E), which is
commutative of rank 4, so Theorem 5.1.13 applies and the Hodge (resp.
Tate) conjecture is true for all powers of A.
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2. E does contain such a k, h = su (V/E) and B2(A) = D2(A) + W .
Moreover, B2(A) is of dimension 8 and D2(A) is of dimension 6.

Proof. In this case A admits complex multiplication, so the statements about
the Hodge and the `-adic Lie algebras are equivalent (since the Mumford-Tate
conjecture holds). We can therefore restrict ourselves to the geometric case.

Ribet’s inequality (Theorem 7.1.3) yields rank(h) ≥ log2(2g) = 3; on the
other hand, rank (u(V/E)) = rank ResE0/Q (u(V,E)) = [E0 : Q] = 4, since V
is an E-vector space of dimension 1. It follows that the rank of h can only be
3 or 4. Clearly, this rank is 4 exactly when h is all of u(V/E).

Suppose that h is of rank 3. Then Key Lemma 2.4.6 shows that there
exists an imaginary quadratic field k ⊂ E such that h = suE/k, so h is in
particular semisimple and Lemma 8.1.2 shows that nσ = nτ = 2.

Conversely, suppose there exists an imaginary quadratic field k contained
in E that acts on A with multiplicities nσ = nτ = 2: then h ⊆ suE/k, and by
rank comparison the two must coincide.

We have therefore shown that the above are the only two possibilities;
we now only need to check that in case (ii) the dimensions of the involved
spaces are the ones claimed. Let Hom(k, L) = {σ, τ}, where we have chosen
σ1, . . . , σ4, τ1, . . . , τ4 in such a way that for each i σi restricts to σ on k and
τi restricts to τ . Proposition 8.2.3 says that the character group of H, or
equivalently of SU(E/k), is

X∗(H) =
Z ·R

〈σj + σj for j = 1, . . . , 4;
∑4

i=1 σi;
∑4

i=1 τi〉
;

in particular, h⊗C is naturally identified with{
(z1,−z1), (z2,−z2), (z3,−z3), (z4,−z4)|

4∑
i=1

zi = 0

}
⊂ E ⊗C ∼=

⊕
ρ∈R

Cρ,

where Cρ = {v ∈ E ⊗C|e · v = ρ(e)v ∀e ∈ E} is the 1-dimensional subspace
on which h acts through the character ρ.

This description allows us to easily compute the dimensions of the invariant
subspaces in both

∧2 V ∗C and
∧4 V ∗C, that are precisely the dimension of the

spaces of Hodge classes we are interested in. Let

Y =

2∧
V ∗C, W :=

4∧
V ∗C.

The character spaces decomposition of Y is Y ∼=
⊕

ρ1 6=ρ2 Y (−ρ1− ρ2); the
trivial character spaces are given by those pairs (ρ1, ρ2) such that ρ1 + ρ2 = 0
in X∗(UE), which happens exactly when ρ1 = ρ2. Analogously, we have a
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character spaces decomposition for W , that we write as

W ∼=
⊕

ρ1,...,ρ4
all distinct

W (−ρ1 − ρ2 − ρ3 − ρ4).

In D1(A) ⊗ C = B1(A) ⊗ C = Y h we then have exactly four copies of
the trivial representation, given by Y (−σi − τi) for i ranging from 1 to 4.
Therefore, the image of the canonical map

(
D1 ⊗C

)
⊗
(
D1 ⊗C

)
→ D2 ⊗C ⊂

4∧
V ∗C = W

is
⊕
i 6=j

W (−σi − τi − σj − τj), of dimension 6.

On the other hand, the space of Hodge classes has dimension 8, because a
character space W (−ρ1−ρ2−ρ3−ρ4) is trivial if and only if ρ1 + . . .+ρ4 = 0,
which happens if (up to renumbering the ρi’s) ρ1 = ρ2 and ρ3 = ρ4 (6 possibil-
ities), or if the set {ρ1, . . . , ρ4} equals one of the sets {σ1, . . . , σ4} , {τ1, . . . , τ4}
(2 possibilities). We therefore have the decomposition

B2(A)⊗C ∼= D2(A)⊗C⊕

W (−σ1 − σ2 − σ3 − σ4)︸ ︷︷ ︸
Wσ

⊕W (−τ1 − τ2 − τ3 − τ4)︸ ︷︷ ︸
Wτ

 ,

and all we need to show is that Wσ ⊕Wτ ⊆ W (A). But this is easy: write
VC ∼= VC,σ ⊕ VC,τ as k ⊗ C-modules and note that (since taking duals and
exterior powers commute)

Wσ
∼=

(
4∧
VC,σ ⊗

0∧
VC,τ

)∗
, Wτ

∼=

(
0∧
VC,σ ⊗

4∧
VC,τ

)∗
,

so W (A)⊗C contains

∧
k⊗C

V ∗C
∼=

(
4∧
VC,σ ⊗

0∧
VC,τ

)∗
⊕

(
0∧
VC,σ ⊗

4∧
VC,τ

)∗
∼= Wσ ⊕Wτ ,

which completes the proof.
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Ai miei amici pisani, per gli anni passati insieme, per le canzoni che ab-
biamo cantato (e scritto), per i giochi inventati e le partite a dernière. Per il
subotto, per le mail di sostegno nei momenti difficili della burocrazia, e per le
volte in cui avete chiamato la mamma. Per essere dei geniali, adorabili nerd,
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[Ser85] J. P. Serre. Résumé des cours de 1984-1985, Annuaire du Collège
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